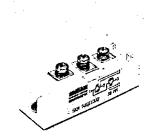
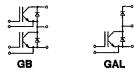
<u>SEMIKRON</u>


	1-33-	1
MITRANS®	M	


Absolut	e Maximum Ratings		
Symbol	Conditions 1)	Values	Units
VCES		1000	V
Vcgr	$R_{GE} = 20 k\Omega$	1000	V
lc	T _{case} = 70 °C	50	A
Ісм	T _{case} = 70 °C	100	A
VGES		± 20	V
Ptot	per IGBT, T _{case} = 25 °C	400	w
Tj, Tstg		−55…+150	°C
Visol	AC, 1 min, 200 μA	2 500	V
humidity	DIN 40 040	Class F	
climate	DIN IEC 68 T.1	55/150/56	
Inverse Di	ode, Free-Wheeling Diode		
lF=-lc	T _{case} = 70 °C	50	A
IFM=-ICM	T _{case} = 70 °C	100	Α

Charact					
Symbol	Conditions 1)	min.	typ.	max.	Units
V _{(BR)CES}	V _{GE} = 0, I _C = 1 mA	1000	_	_	٧
VGE(th)	VGE = VCE, IC = 4 mA	4,5	5,5	7	V
ICES	$V_{GE} = 0$, $T_j = 25^{\circ}C$	-	0,01	1	mA
1	V _{CE} = 1000 V ∫ T _j = 125 °C	_	_	4	mA
IGES	VGE = 20 V, VCE = 0	_	_	100	nA
VCEsat	V _{GE} = 15V, l _C = 50 A	_	3,5	5	V
g _{fs}	$V_{CE} = 20 V, I_{C} = 50 A$	22	28		S
Сснс	per IGBT	-	_	100	pF
Cies	$V_{GE} = 0$; $V_{CE} = 25V$	-	16	_	nF
Coes	f = 1 MHz	-	640	-	pF
Cres		_	200	_	pF
LCE				20	nH
td(on)	Vcc = 600 V	_	100 ³⁾	_	ns
tr	$I_C = 50 A$	_	300 ³⁾	. –	ns
td(off)	$V_{GE} = 15V$	-	4003)/4004	<u>'</u> –	ns
tr	$R_{Gon} = R_{Goff} = 3.3\Omega$	_	500 ³⁾ /250 ⁴		ns
Woff 12	T _j = 125 ℃	_	0,94)	-	mWs
Woff 23	see fig. 21	1	1,3 ⁴⁾	_	mWs
Inverse D	ode, Free-Wheeling Diode				
VEC	$ I_F = 50 \text{ A, V}_{GE} = 0; (T_i = 125 ^{\circ}\text{C})$	_	1,8 (1,6)	-	V
trr	$T_{j} = 25 ^{\circ}C_{0}^{2)}$	_	_	-	ns
	$T_{j} = 125 ^{\circ}\text{C}^{2)}$	-	200	-	ns
Qrr	$T_j = 25/125 ^{\circ}C_{0}^{2}$	-	2/9	-	μC
1RRM	$T_j = 25/125 ^{\circ}\text{C}^{2}$. A
	Characteristics				
Rthjc	per IGBT	-		0,31	°C/W
Rthjc	per diode	-	-	1,0	°C/W
Rthch	per module	_	_	0,05	°C/W

Mecha	anical Data					
M ₁	to heatsink, SI Unit	s	4	_	6	Nm
	to heatsink, US Units		35	-	53	lb.in.
M ₂	for terminals, SI Un	for terminals, SI Units		_	3,5	Nm
	for terminals, US Units		22	-	24	lb.in <u>.</u>
а	,		_	_	5x9,81	m/s ²
w			-	_	250	g
Casa	Tage D 6 100	GAL		D 33		
Case	→ page B 6 – 103 GB			D 27		

SEMITRANS® M IGBT Modules SKM 50 GB 100 D SKM 50 GAL 100 D Preliminary Data

Features

- MOS input (voltage controlled)
- N channel
- Low saturation voltage
- Very low tail current
- Low temperature sensitivity
- Breakdown proof
- High short circuit capability
- No latch-up
- Fast inverse diodes
- Isolated copper baseplate
- Large clearances and creepage distances
- UL recognized, file no. E 63 532

Typical Applications

- Switched mode power supplies
- DC servo and robot drives
- Self-commutated inverters
- DC choppers
- AC motor speed control
- Inductive heating
- Uninterruptible power supplies
- Electronic welders
- General power switching applications
- Pulse frequencies above 15 kHz

IGBT – Insulated Gate Bipolar Transistor

- 1) T_{case} = 25 °C, unless otherwise specified
- 2) $I_F = -I_C V_R = 600 V_A$
- $-di_F/dt = 800 A/\mu s, V_{GE} = 0$
- 3) resistive load
- 4) inductive load

© by SEMIKRON

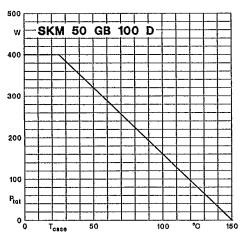
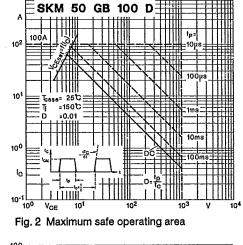



Fig. 1 Rated power dissipation vs. temperature

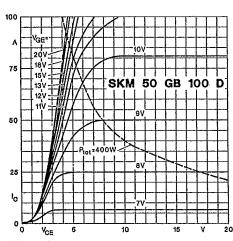


Fig. 15 Output characteristic

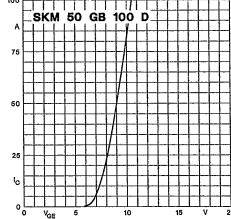


Fig. 16 Transfer characteristic

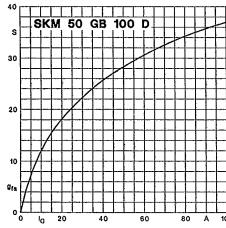


Fig. 17 Forward transconductance

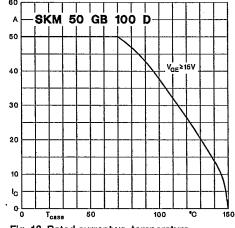
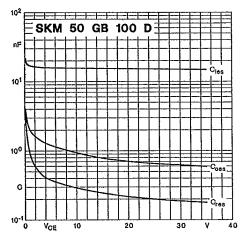



Fig. 18 Rated current vs. temperature

B6-96

© by SEMIKRON

SEMIKRON

T-33-15

Fig. 19 Capacitances vs. collector-emitter voltage

Fig. 20 Gate charge characteristic

Fig. 11 Diode forward characteristic

Fig. 12 Diode recovered charge

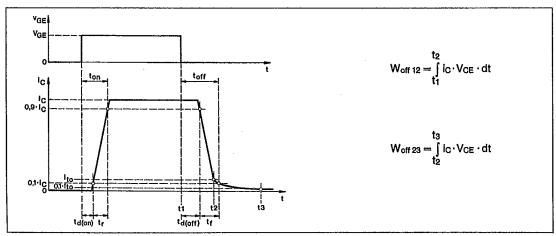


Fig. 21 Switching times and turn-off energies

® by SEMIKRON

B6-97

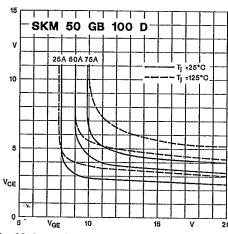


Fig. 22 Saturation characteristics

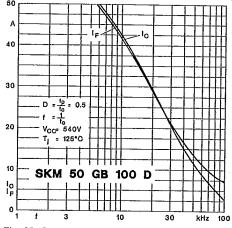


Fig. 23 Current ratings vs. pulse frequency

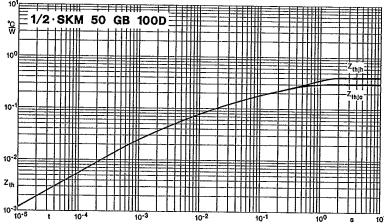


Fig. 25 Transient thermal impedance

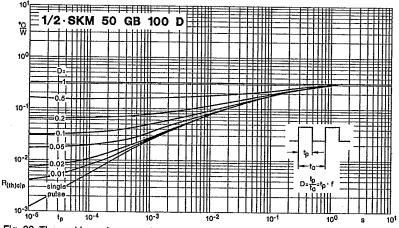


Fig. 26 Thermal impedance under pulse conditions

B6-98

© by SEMIKRON