

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

1Gb DDR2 SDRAM

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

This document is a general product description and is subject to change without notice. Hynix Semiconductor does not assume any responsibility for use of circuits described. No patent licenses are implied. Rev. 0.5 / Aug 2006 1

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

Revision Details

Rev.	History	Draft Date
0.1	Initial data sheet released	Mar. 2006
0.2	Typo corrected	May 2006
0.3	Leakage current spec added and IDD value updated	May 2006
0.4	Removed improper note in ODT DC spec	July 2006
0.5	Added tDS/tDH(single ended strobe) parameter	Aug. 2006

Contents

- 1. Description
 - 1.1 Device Features and Ordering Information
 - 1.1.1 Key Features
 - 1.1.2 Ordering Information
 - 1.1.3 Ordering Frequency
 - 1.2 Pin configuration
 - 1.3 Pin Description

2. Maximum DC ratings

- 2.1 Absolute Maximum DC Ratings
- 2.2 Operating Temperature Condition

3. AC & DC Operating Conditions

- 3.1 DC Operating Conditions
 - 5.1.1 Recommended DC Operating Conditions(SSTL_1.8)
 - 5.1.2 ODT DC Electrical Characteristics
- 3.2 DC & AC Logic Input Levels
 - 3.2.1 Input DC Logic Level
 - 3.2.2 Input AC Logic Level
 - 3.2.3 AC Input Test Conditions
 - 3.2.4 Differential Input AC Logic Level
 - 3.2.5 Differential AC output parameters
- 3.3 Output Buffer Levels
 - 3.3.1 Output AC Test Conditions
 - 3.3.2 Output DC Current Drive
 - 3.3.3 OCD default characteristics
- 3.4 IDD Specifications & Measurement Conditions
- 3.5 Input/Output Capacitance
- 4. AC Timing Specifications
- 5. Package Dimensions

1. Description

1.1 Device Features & Ordering Information

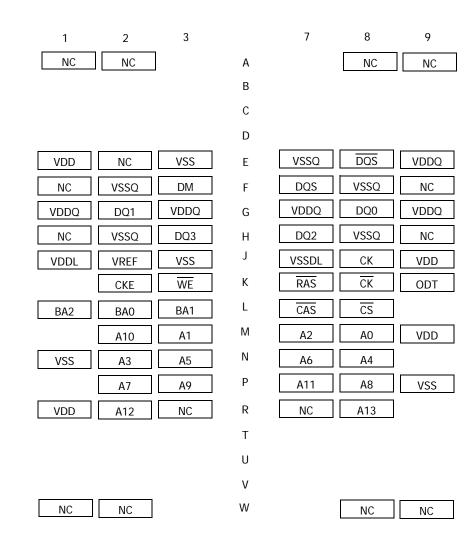
1.1.1 Key Features

- VDD=1.8V
- VDDQ=1.8V +/- 0.1V
- All inputs and outputs are compatible with SSTL_18 interface
- Fully differential clock inputs (CK, /CK) operation
- Double data rate interface
- Source synchronous-data transaction aligned to bidirectional data strobe (DQS, DQS)
- Differential Data Strobe (DQS, DQS)
- Data outputs on DQS, DQS edges when read (edged DQ)
- Data inputs on DQS centers when write(centered DQ)
- On chip DLL align DQ, DQS and $\overline{\text{DQS}}$ transition with CK transition
- · DM mask write data-in at the both rising and falling edges of the data strobe
- All addresses and control inputs except data, data strobes and data masks latched on the rising edges of the clock
- Programmable CAS latency 3, 4, 5 and 6 supported
- Programmable additive latency 0, 1, 2, 3, 4 and 5 supported
- Programmable burst length 4/8 with both nibble sequential and interleave mode
- · Internal eight bank operations with single pulsed RAS
- Auto refresh and self refresh supported
- tRAS lockout supported
- 8K refresh cycles /64ms
- JEDEC standard 68ball FBGA(x4/x8) , 92ball FBGA(x16)
- · Full strength driver option controlled by EMRS
- On Die Termination supported
- Off Chip Driver Impedance Adjustment supported
- Read Data Strobe supported (x8 only)
- Self-Refresh High Temperature Entry

Ordering Information

Operating Frequency

Part No.	Configuration	Package	Grade	tCK(ns)	CL	tRCD	tRP	Unit
HY5PS1G431A(L)FP-X*	256Mx4	68 Ball	-E3	5	3	3	3	Clk
HY5PS1G831A(L)FP-X*	128Mx8	og pall	-C4	3.75	4	4	4	Clk
HY5PS1G1631A(L)FP-X*	64Mx16	92 Ball	-Y5	3	5	5	5	Clk
	1	·	-S5	2.5	5	5	5	Clk


Note:

-X* is the speed bin, refer to the Operation Frequency table for complete Part No.

идиіх

1.2 Pin Configuration & Address Table

256Mx4 DDR2 Pin Configuration(Top view: see balls through package)

ROW AND COLUMN ADDRESS TABLE

256Mx4
8
BA0,BA1,BA2
A10/AP
A0 - A13
A0-A9, A11
1 KB

μημίχ

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

128Mx8 DDR2 PIN CONFIGURATION(Top view: see balls through package)

1	2	3		7	8	9
NC	NC		А		NC	NC
			В			
			С			
			D			
VDD	NU/RDQS	VSS	E	VSSQ	DQS	VDDQ
DQ6	VSSQ	DM/RDQS	F	DQS	VSSQ	DQ7
VDDQ	DQ1	VDDQ	G	VDDQ	DQ0	VDDQ
DQ4	VSSQ	DQ3	Н	DQ2	VSSQ	DQ5
VDDL	VREF	VSS	J	VSSDL	СК	VDD
	CKE	WE	К	RAS	CK	ODT
BA2	BA0	BA1	L	CAS	CS	
	A10	A1	Μ	A2	AO	VDD
VSS	A3	A5	Ν	A6	A4	
	A7	A9	Р	A11	A8	VSS
VDD	A12	NC	R	NC	A13	
			Т			
			U			
			V			
NC	NC		W		NC	NC

ROW AND COLUMN ADDRESS TABLE

ITEMS	128Mx8
# of Bank	8
Bank Address	BAO, BA1, BA2
Auto Precharge Flag	A10/AP
Row Address	A0 - A13
Column Address	A0-A9
Page size	1 KB

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

64Mx16 DDR2 PIN CONFIGURATION(Top view: see balls through package)

1	2	3		7	8	9
NC	NC		А		NC	NC
			В			
			С			
VDD	NC	VSS	D	VSSQ	UDQS	VDDQ
DQ14	VSSQ	UDM	Е	UDQS	VSSQ	DQ15
VDDQ	DQ9	VDDQ	F	VDDQ	DQ8	VDDQ
DQ12	VSSQ	DQ11	G	DQ10	VSSQ	DQ13
VDD	NC	VSS	Н	VSSQ	LDQS	VDDQ
DQ6	VSSQ	LDM	J	LDQS	VSSQ	DQ7
VDDQ	DQ1	VDDQ	К	VDDQ	DQ0	VDDQ
DQ4	VSSQ	DQ3	L	DQ2	VSSQ	DQ5
VDDL	VREF	VSS	М	VSSDL	СК	VDD
	CKE	WE	Ν	RAS	CK	ODT
NC, BA2	BA0	BA1	Р	CAS	CS	
	A10/AP	A1	R	A2	AO	VDD
VSS	A3	A5	т	A6	A4	
	A7	A9	U	A11	A8	VSS
VDD	A12	NC, A14	V	NC, A15	NC, A13	
			W			
			Х			
NC	NC		AA		NC	NC

ROW AND COLUMN ADDRESS TABLE

ITEMS	64Mx16
# of Bank	8
Bank Address	BAO, BA1, BA2
Auto Precharge Flag	A10/AP
Row Address	A0 - A12
Column Address	A0-A9
Page size	2 KB

IDD Test Conditions

(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)

Symbol	Conditions		Units		
IDD0	Operating one bank active-precharge current ; ^t CK = ^t CK(ID ^t RAS min(IDD) ; CKE is HIGH, CS is HIGH between valid command SWITCHING;Data bus inputs are SWITCHING		mA		
IDD1	Operating one bank active-read-precharge current ; $IOUT = 0mA;BL = 4$, $CL = CL(IDD)$, $AL = 0$; $^{t}CK = ^{t}CK(IDD)$, $^{t}RC = ^{t}RC$ (IDD), $^{t}RAS = ^{t}RASmin(IDD)$, $^{t}RCD = ^{t}RCD(IDD)$; CKE is HIGH, \overline{CS} is HIGH between valid commands ; Address bus inputs are SWITCHING ; Data pattern is same as IDD4W				
IDD2P	Precharge power-down current ; All banks idle ; $tCK = tCK(IDD)$; CKE is LOW ; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING				
IDD2Q	Precharge quiet standby current ;All banks idle; ${}^{t}CK = {}^{t}CK(IDD)$;CKE is HIGH, \overline{CS} is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING				
IDD2N	Precharge standby current ; All banks idle; ${}^{t}CK = {}^{t}CK(IDD)$; CKE is HIGH, \overline{CS} is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING				
IDD3P	Active power-down current; All banks open; $tCK = tCK(IDD)$; Fast PDN Exit MRS(12) = 0				
IDD3P	E is LOW; Other control and address bus inputs are STABLE; ta bus inputs are FLOATING Slow PDN Exit MRS(12) = 1				
IDD3N	Active standby current; All banks open; ^t CK = ^t CK(IDD), ^t RAS = ^t RASmax(IDD), ^t RP = ^t RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING				
IDD4W	Operating burst write current ; All banks open, Continuous burst AL = 0; ^t CK = ^t CK(IDD), ^t RAS = ^t RASmax(IDD), ^t RP = ^t RP(IDD); between valid commands; Address bus inputs are SWITCHING; Data	CKE is HIGH, CS is HIGH	mA		
IDD4R	Operating burst read current ; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; $^{t}CK = ^{t}CK(IDD)$, $^{t}RAS = ^{t}RASmax(IDD)$, $^{t}RP = ^{t}RP(IDD)$; CKE is HIGH, \overline{CS} is HIGH between valid commands; Address bus inputs are SWITCHING;; Data pattern is same as IDD4W				
IDD5B	Burst refresh current; ${}^{t}CK = {}^{t}CK(IDD)$; Refresh command at every ${}^{t}RFC(IDD)$ interval; CKE is HIGH, \overline{CS} is HIGH between valid commands; Other control and address bus inputs are SWITCH-ING; Data bus inputs are SWITCHING				
IDD6	Self refresh current ; CK and \overline{CK} at 0V; CKE £ 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING				
IDD7	Operating bank interleave read current ; All bank interleaving = CL(IDD), $AL = {}^{t}RCD(IDD) - 1 {}^{t}CK(IDD)$; ${}^{t}CK = {}^{t}CK(IDD)$, ${}^{t}RC = {}^{t}RCD = 1 {}^{t}CK(IDD)$; CKE is HIGH, \overline{CS} is HIGH between valid commod STABLE during DESELECTs; Data pattern is same as IDD4R; - Refer detailed timing conditions	RC(IDD), ^t RRD = ^t RRD(IDD), nands; Address bus inputs are	mA		

Note:

- 1. VDDQ = 1.8 +/- 0.1V ; VDD = 1.8 +/- 0.1V (exclusively VDDQ = 1.9 +/- 0.1V ; VDD = 1.9 +/- 0.1V for C3 speed grade)
- 2. IDD specifications are tested after the device is properly initialized
- 3. Input slew rate is specified by AC Parametric Test Condition
- 4. IDD parameters are specified with ODT disabled.
- 5. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met with all combinations of EMRS bits 10 and 11.
- 6. Definitions for IDD

LOW is defined as Vin £ VILAC(max)

HIGH is defined as Vin Š VIHAC(min)

STABLE is defined as inputs stable at a HIGH or LOW level

FLOATING is defined as inputs at VREF = VDDQ/2

SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes.

2. Maximum DC Ratings

2.1 Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units	Notes
VDD	Voltage on VDD pin relative to Vss	- 1.0 V ~ 2.3 V	V	1
VDDQ	Voltage on VDDQ pin relative to Vss	- 0.5 V ~ 2.3 V	V	1
VDDL	Voltage on VDDL pin relative to Vss	- 0.5 V ~ 2.3 V	V	1
V _{IN,} V _{OUT}	Voltage on any pin relative to Vss	- 0.5 V ~ 2.3 V	V	1
T _{STG}	Storage Temperature	-55 to +100	°C	1, 2
lı	Input leakage current; any input 0V VIN VDD; all other balls not under test = 0V)	-2 uA ~ 2 uA	uA	
loz	Output leakage current; 0V VOUT VDDQ; DQ and ODT disabled	-5 uA ~ 5 uA	uA	

Note:

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions. Please refer to JESD51-2 standard.

2.2 Operating Temperature Condition

Symbol	Parameter	Rating	Units	Notes
tOPER	Operating Temperature	0 to 95	°C	1,2

Note:

- 1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- 2. At tOPER 85~95°..., Double refresh rate(tREFI: 3.9us) is required, and to enter the self refresh mode at this temperature range it must be required an EMRS command to change itself refresh rate.

3. AC & DC Operating Conditions

3.1 DC Operating Conditions

3.1.1 Recommended DC Operating Conditions (SSTL_1.8)

Cumula al	Demonstern		Rating		11	Natas	
Symbol	Parameter	Min. Typ.		Max.	Units	Notes	
VDD	Supply Voltage	1.7	1.8	1.9	V	1	
VDDL	Supply Voltage for DLL	1.7	1.8	1.9	V	1,2	
VDDQ	Supply Voltage for Output	1.7	1.8	1.9	V	1,2	
VREF	Input Reference Voltage	0.49*VDDQ	0.50*VDDQ	0.51*VDDQ	mV	3,4	
VTT	Termination Voltage	VREF-0.04	VREF	VREF+0.04	V	5	

Note:

- 1. Min. Typ. and Max. values increase by 100mV for C3(DDR2-533 3-3-3) speed option.
- 2. VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDD.
- 3. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ
- 4. Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).
- 5. VTT of transmitting device must track VREF of receiving device.

3.1.2 ODT DC electrical characteristics

PARAMETER/CONDITION	SYMBOL	MIN	NOM	MAX	UNITS	NOTES
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm	Rtt1(eff)	60	75	90	ohm	1
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm	Rtt2(eff)	120	150	180	ohm	1
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm	Rtt3(eff)	40	50	60	ohm	1
Deviation of VM with respect to VDDQ/2	delta VM	-6		+6	%	1

Note :

1. Test condition for Rtt measurements

Measurement Definition for Rtt(eff): Apply V_{IH} (ac) and V_{IL} (ac) to test pin separately, then measure current I(V_{IH} (ac)) and I(V_{IL} (ac)) respectively. V_{IH} (ac), V_{IL} (ac), and VDDQ values defined in SSTL_18

$$Rtt(eff) = \frac{V_{IH} (ac) - V_{IL} (ac)}{I(V_{IH} (ac)) - I(V_{IL} (ac))}$$

Measurement Definition for VM : Measurement Voltage at test pin(mid point) with no load.

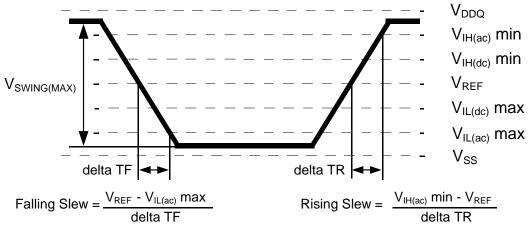
delta VM =
$$\frac{2 \text{ x Vm}}{\text{VDDQ}}$$
 - 1 x 100%

3.2 DC & AC Logic Input Levels

3.2.1 Input DC Logic Level

Symbol	Parameter	Min.	Max.	Units	Notes
V _{IH} (dc)	dc input logic high	VREF + 0.125	VDDQ + 0.3	V	
V _{IL} (dc)	dc input logic low	- 0.3	VREF - 0.125	V	

3.2.2 Input AC Logic Level

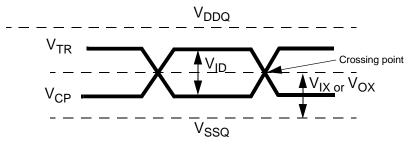

Complete I	Demonster	DDR2 400,533		DDR2 6	67,800	11	Nistas
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	Notes
V _{IH} (ac)	ac input logic high	VREF + 0.250	-	VREF + 0.200	-	V	
V _{IL} (ac)	ac input logic low	-	VREF - 0.250	-	VREF - 0.200	V	

3.2.3 AC Input Test Conditions

Symbol	Condition	Value	Units	Notes
V _{REF}	Input reference voltage	0.5 * V _{DDQ}	V	1
V _{SWING(MAX)}	Input signal maximum peak to peak swing	1.0	V	1
SLEW	Input signal minimum slew rate	1.0	V/ns	2, 3

Note:

- 1. Input waveform timing is referenced to the input signal crossing through the V_{REF} level applied to the device under test.
- 2. The input signal minimum slew rate is to be maintained over the range from V_{REF} to $V_{IH(ac)}$ min for rising edges and the range from V_{REF} to $V_{IL(ac)}$ max for falling edges as shown in the below figure.
- 3. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative transitions.


< Figure : AC Input Test Signal Waveform>

3.2.4 Differential Input AC logic Level

Symbol	Parameter	Min.	Max.	Units	Notes
V _{ID} (ac)	ac differential input voltage	0.5	VDDQ + 0.6	V	1
V _{IX} (ac)	ac differential cross point voltage	0.5 * VDDQ - 0.175	0.5 * VDDQ + 0.175	V	2

Note:

- 1. <u>VIN(DC</u>) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS, LDQS, LDQS, UDQS and UDQS.
- 2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input (such as CK, DQS, LDQS or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS) level. The minimum value is equal to VIH(DC) V IL(DC).

< Differential signal levels >

Note:

- VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH(AC) - V IL(AC).
- 2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ. VIX(AC) indicates the voltage at which differential input signals must cross.

3.2.5 Differential AC output parameters

Symbol	Parameter	Min.	Max.	Units	Notes
V _{OX} (ac)	ac differential cross point voltage	0.5 * VDDQ - 0.125	0.5 * VDDQ + 0.125	V	1

Note:

1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is expected to track variations1. in VDDQ . VOX(AC) indicates the voltage at which differential output signals must cross.

3.3 Output Buffer Characteristics

3.3.1 Output AC Test Conditions

Symbol	Parameter	SSTL_18 Class II	Units	Notes
V _{OTR}	Output Timing Measurement Reference Level	0.5 * V _{DDQ}	V	1

Note:

1. The VDDQ of the device under test is referenced.

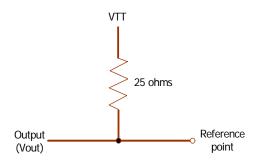
3.3.2 Output DC Current Drive

Symbol	Parameter	SSTI_18	Units	Notes
I _{OH(dc)}	Output Minimum Source DC Current	- 13.4	mA	1, 3, 4
I _{OL(dc)}	Output Minimum Sink DC Current	13.4	mA	2, 3, 4

Note:

- 1. $V_{DDQ} = 1.7 \text{ V}$; $V_{OUT} = 1420 \text{ mV}$. $(V_{OUT} V_{DDQ})/I_{OH}$ must be less than 21 ohm for values of V_{OUT} between V_{DDQ} and V_{DDQ} 280 mV.
- 2. $V_{DDQ} = 1.7 \text{ V}$; $V_{OUT} = 280 \text{ mV}$. V_{OUT}/I_{OL} must be less than 21 ohm for values of V_{OUT} between 0 V and 280 mV.
- 3. The dc value of V_{REF} applied to the receiving device is set to V_{TT}
- 4. The values of I_{OH(dc)} and I_{OL(dc)} are based on the conditions given in Notes 1 and 2. They are used to test device drive current capability to ensure V_{IH} min plus a noise margin and V_{IL} max minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating point (see Section 3.3) along a 21 ohm load line to define a convenient driver current for measurement.

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP


3.3.3 OCD default characteristics

Description	Parameter	Min	Nom	Max	Unit	Notes
Output impedance		-	-	-	ohms	1
Output impedance step size for OCD calibration		0		1.5	ohms	6
Pull-up and pull-down mismatch		0		4	ohms	1,2,3
Output slew rate	Sout	1.5	-	5	V/ns	1,4,5,6,7,8

Note :

- 1. Absolute Specifications (Toper; $VDD = +1.8V \pm 0.1V$, $VDDQ = +1.8V \pm 0.1V$)
- Impedance measurement condition for output source dc current: VDDQ=1.7V; VOUT=1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV.
 Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/IoI must be less than 23.4 ohms for values of VOUT between 0V and 280mV.
- 3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.
- 4. Slew rate measured from vil(ac) to vih(ac).
- 5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization.
- 6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process corners/variations and represents only the DRAM uncertainty. A 0 ohm value(no calibration) can only be achieved if the OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.

Output Slew rate load:

- 7. DRAM output slew rate specification applies to 400, 533 and 667 MT/s speed bins.
- 8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification.

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

ициіх

3.4 IDD Specifications & Test Conditions

IDD Specifications(max)

Svir	nbol	D	DR2 40	00	D	DR2 53	33	D	DR2 66	57	D	DR2 80	00	11
		x4	x8	x16	x 4	x8	x16	x4	x8	x16	x 4	x8	x16	Units
IDD0		80	80	110	85	85	115	90	90	120	100	100	130	mA
IDD1		95	95	130	100	100	135	105	105	140	115	115	150	mA
IDD2P		8	8	8	8	8	8	10	10	10	10	10	10	mA
IDD2Q		25	25	25	28	28	28	30	30	30	32	32	32	mA
IDD2N		35	35	35	40	40	40	45	45	45	50	50	50	mA
IDD3P	F	30	30	35	30	30	35	33	33	38	33	33	38	mA
IDD3F	S	30	30	35	30	30	35	33	33	38	33	33	38	mA
IDD3N		60	60	60	65	65	65	72	72	72	75	75	75	mA
IDI	D4W	150	150	200	170	170	220	210	210	260	240	240	290	mA
ID	D4R	160	160	200	180	180	220	220	220	260	250	250	290	mA
IC	D5	260	260	260	260	260	260	270	270	270	270	270	270	mA
	Normal	8	8	8	8	8	8	8	8	8	8	8	8	mA
IDD6	Low power	5	5	5	5	5	5	5	5	5	5	5	5	mA
IC	D7	260	260	390	295	295	420	310	310	430	340	340	480	mA

IDD Test Conditions

(IDD values are for full operating range of Voltage and Temperature, Notes 1-5)

Symbol	Conditions		Units			
IDD0	Operating one bank active-precharge current ; ${}^{t}CK = {}^{t}CK(IDD)$, min(IDD) ; CKE is HIGH, \overline{CS} is HIGH between valid commands;Addres ING;Data bus inputs are SWITCHING		mA			
IDD1	Operating one bank active-read-precharge current ; IOUT = 0m t _{CK} = t _{CK} (IDD), t _{RC} = t _{RC} (IDD), t _{RAS} = t _{RASmin} (IDD), t _{RCD} = t _{RCI} between valid commands ; Address bus inputs are SWITCHING ; Data	$D(IDD)$; CKE is HIGH, \overline{CS} is HIGH	mA			
IDD2P	Precharge power-down current ; All banks idle ; $tCK = tCK(IDD)$; CKE is LOW ; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING					
IDD2Q	Precharge quiet standby current ;All banks idle; ${}^{t}CK = {}^{t}CK(IDD)$;CKE is HIGH, \overline{CS} is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING					
IDD2N	Precharge standby current ; All banks idle; ${}^{t}CK = {}^{t}CK(IDD)$; CKE is HIGH, \overline{CS} is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING					
IDD3P	Active power-down current ; All banks open; ^t CK = ^t CK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data	Fast PDN Exit MRS(12) = 0	mA			
IDDJF		Slow PDN Exit MRS(12) = 1	mA			
IDD3N	Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRCKE is HIGH, CS is HIGH between valid commands; Other control and ING; Data bus inputs are SWITCHING		mA			
IDD4W	Operating burst write current ; All banks open, Continuous burst w = 0; ^t CK = ^t CK(IDD), ^t RAS = ^t RASmax(IDD), ^t RP = ^t RP(IDD); CKE is commands; Address bus inputs are SWITCHING; Data bus inputs are	HIGH, CS is HIGH between valid	mA			
IDD4R	Operating burst read current ; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; ^t CK = ^t CK(IDD), ^t RAS = ^t RASmax(IDD), ^t RP = ^t RP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING;; Data pattern is same as IDD4W					
IDD5B	Burst refresh current ; ^t CK = ^t CK(IDD); Refresh command at every ^t RFC(IDD) interval; CKE is HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING					
IDD6	Self refresh current ; CK and CK at 0V; CKE £ 0.2V; Other control a ING; Data bus inputs are FLOATING	nd address bus inputs are FLOAT-	mA			

FLOATING is defined as inputs at VREF = VDDQ/2

SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes.

IDD7 CL(IDD), $AL = {}^{t}RCD(IDD) \cdot 1 {}^{t}CK(IDD); {}^{t}CK = {}^{t}CK(IDD), {}^{t}RC = {}^{t}RC(IDD), {}^{t}RRD = {}^{t}RRD(IDD), {}^{t}RCD = 1 {}^{t}CK(IDD); CKE is HIGH, \overline{CS} is HIGH between valid commands; Address bus inputs are STABLE during$			Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL =		
1* ^t CK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during	חחו	1/		mA	
DESELECTs; Data pattern is same as IDD4R; - Refer to the following page for detailed timing conditions			1* ^t CK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; - Refer to the following page for detailed timing conditions		

Note :

- 1. VDDQ = 1.8 +/- 0.1V ; VDD = 1.8 +/- 0.1V (exclusively VDDQ = 1.9 +/- 0.1V ; VDD = 1.9 +/- 0.1V for C3 speed grade)
- 2. IDD specifications are tested after the device is properly initialized
- 3. Input slew rate is specified by AC Parametric Test Condition
- 4. IDD parameters are specified with ODT disabled.
- 5. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met with all combinations of EMRS bits 10 and 11.
- 6. Definitions for IDD
 - LOW is defined as Vin £ VILAC(max)
 - HIGH is defined as Vin Š VIHAC(min)
 - STABLE is defined as inputs stable at a HIGH or LOW level
 - FLOATING is defined as inputs at VREF = VDDQ/2

SWITCHING is defined as: inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control signals, and inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes.

	DDR2	2-667	DDR2	2-533	DDR2	2-400	
Parameter	5-5-5	6-6-6	4-4-4	5-5-5	3-3-3	4-4-4	Units
CL(IDD)	5	6	4	5	3	4	tCK
^t RCD(IDD)	15	18	15	18.75	15	20	ns
^t RC(IDD)	60	63	60	63.75	55	65	ns
^t RRD(IDD)-x4/x8	7.5	7.5	7.5	7.5	7.5	7.5	ns
^t RRD(IDD)-x16	9	9	10	10	10	10	ns
^t CK(IDD)	3	3	3.75	3.75	5	5	ns
^t RASmin(IDD)	45	45	45	45	40	45	ns
tRASmax(IDD)	70000	70000	70000	70000	70000	70000	ns
^t RP(IDD)	15	18	15	18.75	15	20	ns
^t RFC(IDD)-256Mb	75	75	75	75	75	75	ns
^t RFC(IDD)-512Mb	105	105	105	105	105	105	ns
^t RFC(IDD)-1Gb	127.5	127.5	127.5	127.5	127.5	127.5	ns
^t RFC(IDD)-2Gb	197.5	197.5	197.5	197.5	197.5	197.5	ns

For purposes of IDD testing, the following parameters are to be utilized

Detailed IDD7

The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the specification.

Legend: A = Active; RA = Read with Autoprecharge; D = Deselect

IDD7: Operating Current: All Bank Interleave Read operation

All banks are being interleaved at minimum ^tRC(IDD) without violating ^tRRD(IDD) using a burst length of 4. Control and address bus inputs are STABLE during DESELECTS. IOUT = 0mA

Timing Patterns for 4 bank devices x4/ x8/ x16

-DDR2-400 4/4/4: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D

-DDR2-400 3/3/3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D

-DDR2-533 5/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D

-DDR2-533 4/4/4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D

Timing Patterns for 8 bank devices x4/8 -DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 A4 RA4 A5 RA5 A6 RA6 A7 RA7

-DDR2-533 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D

Timing Patterns for 8 bank devices x16 -DDR2-400 all bins: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D A4 RA4 A5 RA5 A6 RA6 A7 RA7 D D

-DDR2-533 all bins: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D A4 RA4 D A5 D A6 RA6 D A7 RA7 D D D

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

3.5. Input/Output Capacitance

Parameter	Symbol		2 400 2 533	DDR: DDR:	Units	
	-	Min	Мах	Min	Max	
Input capacitance, CK and \overline{CK}	ССК	1.0	2.0	1.0	2.0	pF
Input capacitance delta, CK and \overline{CK}	CDCK	х	0.25	х	0.25	pF
Input capacitance, all other input-only pins	CI	1.0	2.0	1.0	2.0	pF
Input capacitance delta, all other input-only pins	CDI	х	0.25	х	0.25	pF
Input/output capacitance, DQ, DM, DQS, DQS	CIO	2.5	4.0	2.5	3.5	pF
Input/output capacitance delta, DQ, DM, DQS, DQS	CDIO	х	0.5	х	0.5	pF

4. Electrical Characteristics & AC Timing Specification

(0 $^\circ \! \mathbb{C} \ \le \ T_{\mbox{CASE}} \le \ 95 \, ^\circ \! \mathbb{C} \, ; \, \mbox{V}_{\mbox{DDQ}}$ = 1.8 V +/- 0.1V; $\mbox{V}_{\mbox{DD}}$ = 1.8V +/- 0.1V)

Refresh Parameters by Device Density

Parameter		Symbol	256Mb	512Mb	1Gb	2Gb	4Gb	Units
Refresh to Active/Refresh command time		tRFC	75	105	127.5	195	327.5	ns
Average periodic refresh interval		$0 \ \mathbb{C} \leq \mathbf{T}_{CASE} \leq 95 \ \mathbb{C}$	7.8	7.8	7.8	7.8	7.8	ns
Average periodic refresh interval	tREFI	$\mathbf{85^{\circ}C} < \mathbf{T_{CASE}} \le 95^{\circ}C$	3.9	3.9	3.9	3.9	3.9	ns

DDR2 SDRAM speed bins and tRCD, tRP and tRC for corresponding bin

Speed	DDR2-667	DDR2-533	DDR2-533	DDR2-533	DDR2-400	DDR2-400	Units
Bin(CL-tRCD-tRP)	4-4-4	3-3-3	4-4-4	5-5-5	3-3-3	4-4-4	
Parameter	min	min	min	min	min	min	
CAS Latency	4	3	4	5	3	4	tCK
tRCD	12	11.25	15	18.75	15	20	ns
tRPNote1	12	11.25	15	18.75	15	20	ns
tRAS	45	45	45	45	40	40	ns
tRC	57	56.25	60	63.75	55	65	ns

Note 1: 8 bank device Precharge All Allowance : tRP for a Precharge All command for and 8 Bank device will equal to tRP+1*tCK, where tRP are the values for a single bank Precharge, which are shown in the above table.

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

Timing Parameters by Speed Grade

2	Symbol	DDR	2-400	DDR2	2-533	Unit	Note
Parameter	Symbol	min	max	min	max	Onne	Note
DQ output access time from CK/CK	tAC	-600	+600	-500	+500	ps	
DQS output access time from CK/CK	tDQSCK	-500	+500	-450	+450	ps	
CK high-level width	tCH	0.45	0.55	0.45	0.55	tCK	
CK low-level width	tCL	0.45	0.55	0.45	0.55	tCK	
CK half period	tHP	min(tCL, tCH)	-	min(tCL, tCH)	-	ps	11,12
Clock cycle time, CL=x	tCK	5000	8000	3750	8000	ps	15
DQ and DM input setup time(differential strobe)	tDS(base)	150	-	100	-	ps	6,7,8,20
DQ and DM input hold time(differential strobe)	tDH(base)	275	-	225	-	ps	6,7,8,21
DQ and DM input setup time(single ended strobe)	tDS	25	-	-25	-	ps	6,7,8,20
DQ and DM input hold time(single ended strobe)	tDH	25	-	-25	-	ps	6,7,8,21
Control & Address input pulse width for each input	tIPW	0.6	-	0.6	-	tCK	
DQ and DM input pulse width for each input	tDIPW	0.35	-	0.35	-	tCK	
Data-out high-impedance time from CK/CK	tHZ	-	tAC max	-	tAC max	ps	18
DQS low-impedance time from CK/CK	tLZ (DQS)	tAC min	tAC max	tAC min	tAC max	ps	18
DQ low-impedance time from CK/CK	tLZ (DQ)	2*tAC min	tAC max	2*tAC min	tAC max	ps	18
DQS-DQ skew for DQS and associated DQ signals	tDQSQ	-	350	-	300	ps	13
DQ hold skew factor	tQHS	-	450	-	400	ps	12
DQ/DQS output hold time from DQS	tQH	tHP - tQHS	-	tHP - tQHS	-	ps	
Write command to first DQS latching transition	tDQSS	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	tCK	
DQS input high pulse width	tDQSH	0.35	-	0.35	-	tCK	
DQS input low pulse width	tDQSL	0.35	-	0.35	-	tCK	
DQS falling edge to CK setup time	tDSS	0.2	-	0.2	-	tCK	
DQS falling edge hold time from CK	tDSH	0.2	-	0.2	-	tCK	
Mode register set command cycle time	tMRD	2	-	2	-	tCK	
Write postamble	tWPST	0.4	0.6	0.4	0.6	tCK	10
Write preamble	tWPRE	0.35	-	0.35	-	tCK	
Address and control input setup time	tIS	350	-	250	-	ps	5,7,9,23
Address and control input hold time	tlH	475	-	375	-	ps	5,7,9,23
Read preamble	tRPRE	0.9	1.1	0.9	1.1	tCK	
Read postamble	tRPST	0.4	0.6	0.4	0.6	tCK	
Active to active command period for 1KB page size products	tRRD	7.5	-	7.5	-	ns	4
Active to active command period for 2KB page size products	tRRD	10	-	10	-	ns	4

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

-Continued

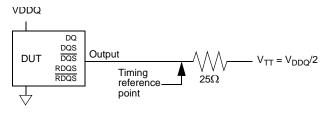
. .	Symbol	DDR	2-400	DDR2	2-533	Unit	Note	
Parameter	Symbol	min	max	min	max	Unit	Note	
Four Active Window for 1KB page size products	tFAW	37.5	-	37.5	-	ns		
Four Active Window for 2KB page size products	tFAW	50	-	50	-			
CAS to CAS command delay	tCCD	2		2		tCK		
Write recovery time	tWR	15	-	15	-	ns		
Auto precharge write recovery + precharge time	tDAL	WR+tRP*	-	WR+tRP*	-	tCK	14	
Internal write to read command delay	tWTR	10	-	7.5	-	ns	24	
Internal read to precharge command delay	tRTP	7.5		7.5		ns	3	
Exit self refresh to a non-read command	tXSNR	tRFC + 10		tRFC + 10		ns		
Exit self refresh to a read command	tXSRD	200	-	200	-	tCK		
Exit precharge power down to any non-read command	tXP	2	-	2	-	tCK		
Exit active power down to read command	tXARD	2		2		tCK	1	
Exit active power down to read command (Slow exit, Lower power)	tXARDS	6 - AL		6 - AL		tCK	1, 2	
CKE minimum pulse width (high and low pulse width)	^t CKE	3		3		tCK		
ODT turn-on delay	^t AOND	2	2	2	2	tCK		
ODT turn-on	^t AON	tAC(min)	tAC(max)+ 1	tAC(min)	tAC(max) +1	ns	16	
ODT turn-on(Power-Down mode)	^t AONPD	tAC(min)+ 2	2tCK+tAC(max) +1	tAC(min)+ 2	2tCK+tAC (max)+1	ns		
ODT turn-off delay	^t AOFD	2.5	2.5	2.5	2.5	tCK		
ODT turn-off	^t AOF	tAC(min)	tAC(max)+ 0.6	tAC(min)	tAC(max) + 0.6	ns	17	
ODT turn-off (Power-Down mode)	^t AOFPD	tAC(min)+ 2	2.5tCK+tA C(max)+1	tAC(min)+ 2	2.5tCK+tA C(max)+1	ns		
ODT to power down entry latency	tANPD	3		3		tCK		
ODT power down exit latency	tAXPD	8		8		tCK		
OCD drive mode output delay	tOIT	0	12	0	12	ns		
Minimum time clocks remains ON after CKE asynchronously drops LOW	tDelay	tIS+tCK+tI H		tlS+tCK+tl H		ns	15	

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

. .	Symbol	DDR2	2-667	DDR2	2-800	Unit	Note
Parameter	Symbol	min	max	min	max		Note
DQ output access time from CK/CK	tAC	-450	+450	-400	+400	ps	
DQS output access time from CK/CK	tDQSCK	-400	+400	-350	+350	ps	
CK high-level width	tCH	0.45	0.55	0.45	0.55	tCK	
CK low-level width	tCL	0.45	0.55	0.45	0.55	tCK	
CK half period	tHP	min(tCL, tCH)	-	min(tCL, tCH)	-	ps	11,12
Clock cycle time, CL=x	tCK	3000	8000	2500		ps	15
DQ and DM input setup time	tDS(base)	100	-	50	-	ps	6,7,8,20
DQ and DM input hold time	tDH(base)	175	-	125	-	ps	6,7,8,21
Control & Address input pulse width for each input	tIPW	0.6	-	0.6	-	tCK	
DQ and DM input pulse width for each input	tDIPW	0.35	-	0.35	-	tCK	
Data-out high-impedance time from CK/CK	tHZ	-	tAC max	-	tAC max	ps	18
DQS low-impedance time from CK/CK	tLZ(DQS)	tAC min	tAC max	tAC min	tAC max	ps	18
DQ low-impedance time from CK/CK	tLZ(DQ)	2*tAC min	tAC max	2*tAC min	tAC max	ps	18
DQS-DQ skew for DQS and associated DQ signals	tDQSQ	-	240	-	200	ps	13
DQ hold skew factor	tQHS	-	340	-	300	ps	12
DQ/DQS output hold time from DQS	tQH	thp - tqhs	-	thp - tqhs	-	ps	
First DQS latching transition to associated clock edge	tDQSS	- 0.25	+ 0.25	- 0.25	+ 0.25	tCK	
DQS input high pulse width	tDQSH	0.35	-	0.35	-	tCK	
DQS input low pulse width	tDQSL	0.35	-	0.35	-	tCK	
DQS falling edge to CK setup time	tDSS	0.2	-	0.2	-	tCK	
DQS falling edge hold time from CK	tDSH	0.2	-	0.2	-	tCK	
Mode register set command cycle time	tMRD	2	-	2	-	tCK	
Write postamble	tWPST	0.4	0.6	0.4	0.6	tCK	10
Write preamble	tWPRE	0.35	-	0.35	-	tCK	
Address and control input setup time	tIS(base)	200	-	175	-	ps	5,7,9,22
Address and control input hold time	tIH(base)	275	-	250	-	ps	5,7,9,23
Read preamble	tRPRE	0.9	1.1	0.9	1.1	tCK	19
Read postamble	tRPST	0.4	0.6	0.4	0.6	tCK	19
Activate to precharge command	tRAS	45	70000	45	70000	ns	3
Active to active command period for 1KB page size products	tRRD	7.5	-	7.5	-	ns	4
Active to active command period for 2KB page size products	tRRD	10	-	10	-	ns	4
Four Active Window for 1KB page size products	tFAW	37.5	-	37.5	-	ns	
Four Active Window for 2KB page size products	tFAW	50	-	50	-	ns	
CAS to CAS command delay	tCCD	2		2		tCK	
Write recovery time	tWR	15	-	15	-	ns	
Auto precharge write recovery + precharge time	tDAL	WR+tRP	-	WR+tRP	-	tCK	14

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

-Continue-

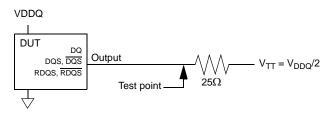

_	Symbol	DDR	2-667	DDF	R2-800	Unit	Note
Parameter	Symbol	min	max	min	max	Unit	Note
Internal write to read command delay	tWTR	7.5	-	7.5	-	ns	
Internal read to precharge command delay	tRTP	7.5		7.5		ns	3
Exit self refresh to a non-read command	tXSNR	tRFC + 10		tRFC + 10		ns	
Exit self refresh to a read command	tXSRD	200	-	200	-	tCK	
Exit precharge power down to any non-read command	tXP	2	-	2	-	tCK	
Exit active power down to read command	tXARD	2		2		tCK	1
Exit active power down to read command (Slow exit, Lower power)	tXARDS	7 - AL		8 - AL		tCK	1, 2
CKE minimum pulse width (high and low pulse width)	^t CKE	3		3		tCK	
ODT turn-on delay	^t AOND	2	2	2	2	tCK	
ODT turn-on	^t AON	tAC(min)	tAC(max) +0.7	tAC(min)	tAC(max) +0.7	ns	6,16
ODT turn-on(Power-Down mode)	^t AONPD	tAC(min)+2	2tCK+ tAC(max)+1	tAC(min) +2	2tCK+ tAC(max)+1	ns	
ODT turn-off delay	^t AOFD	2.5	2.5	2.5	2.5	tCK	
ODT turn-off	^t AOF	tAC(min)	tAC(max)+ 0.6	tAC(min)	tAC(max) +0.6	ns	17
ODT turn-off (Power-Down mode)	^t AOFPD	tAC(min) +2	2.5tCK+ tAC(max)+1	tAC(min) +2	2.5tCK+ tAC(max)+1	ns	
ODT to power down entry latency	tANPD	3		3		tCK	
ODT power down exit latency	tAXPD	8		8		tCK	
OCD drive mode output delay	tOIT	0	12	0	12	ns	
Minimum time clocks remains ON after CKE asynchronously drops LOW	tDelay	tIS+tCK+tIH		tIS+tCK +tIH		ns	15



General notes, which may apply for all AC parameters

- 1. Slew Rate Measurement Levels
 - a. Output slew rate for falling and rising edges is measured between VTT 250 mV and VTT + 250 mV for single ended signals. For differential signals (e.g. DQS DQS) output slew rate is measured between DQS DQS = -500 mV and DQS DQS = +500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.
 - b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF 125 mV to VREF + 250 mV for rising edges and from VREF + 125 mV and VREF 250 mV for falling edges. For differential signals (e.g. CK CK) slew rate for rising edges is measured from CK CK = -250 mV to CK CK = +500 mV (250mV to -500 mV for falling egges).
 - c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe.
- 2. DDR2 SDRAM AC timing reference load

The following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics).



The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.

3. DDR2 SDRAM output slew rate test load

Output slew rate is characterized under the test conditions as shown below.

Slew Rate Test Load

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

4. Differential data strobe

DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS "Enable DQS" mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode dependent. In single VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally to VSS through a 20 ohm to 10 K ohm resistor to insure proper operation.

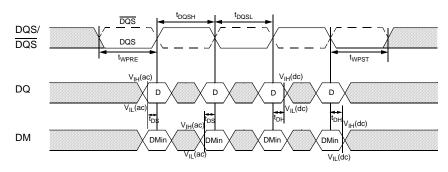


Figure -- Data input (write) timing

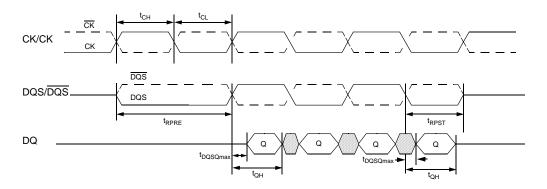


Figure -- Data output (read) timing

- 5. AC timings are for linear signal transitions. See System Derating for other signal transitions.
- 6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester correlation.
- 7. All voltages referenced to VSS.

8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.

Specific Notes for dedicated AC parameters

1. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing. tXARDS is expected to be used for slow active power down exit timing where a lower power value is defined by each vendor data sheet.

2. AL = Additive Latency

3. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.

4. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency

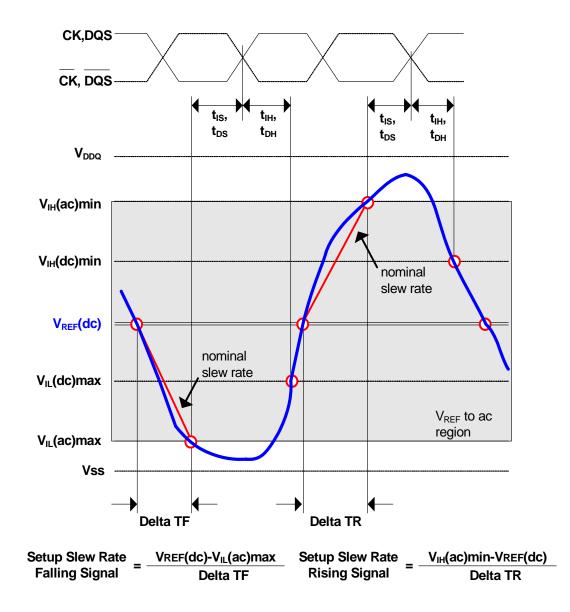
5. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for other slew rate values.

6. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns. See System Derating for other slew rate values.

7. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single ended mode. See System Derating for other slew rate values.

	tDS, tDH Derating Values(ALL units in 'ps', Note 1 applies to entire Table)																		
	DQS, DQS Differential Slew Rate																		
		4.0 V/ns		3.0 V/ns		2.0	V/ns	1.8	V/ns	1.6 V/ns		1.4 V/ns		1.2	V/ns	1.0 V/ns		0.8 V/ns	
		∆tD	∆tD	∆tD	∆tD		∆tD	∆tD	∆tD		∆tD	∆tD	∆tD	∆tD		∆tD	∆tD	∆tD	∆tD
		S	Н	S	Н	S	Н	S	Н	S	Н	S	Н	S	Н	S	Н	S	Н
	2.0	125	45	125	45	+125	+45	-	-	-	-	-	-	-	-	-	-	-	-
	1.5	83	21	83	21	+83	+21	95	33	-	-	-	-	-	-	-	-	-	-
	1.0	0	0	0	0	0	0	12	12	24	24	-	-	-	-	-	-	-	-
DQ	0.9	-	-	-11	-14	-11	-14	1	-2	13	10	25	22	-	-	-	-	-	-
Slew rate	0.8	-	-	-	•	-25	-31	-13	-19	-1	-7	11	5	23	17	-	-	-	-
V/ns	0.7	-	-	-	-	-43	-54	-31	-42	-42	-19	-7	-8	5	-6	17	6	-	-
¥/113	0.6	-	-	-	-	-67	-83	-	-	-43	-59	-31	-47	-19	-35	-7	-23	5	-11
	0.5	-	-	-	-	-110	-125	-	-	-	-	-74	-89	-62	-77	-50	-65	-38	-53
	0.4	-	-	-	-	-175	-188	-	-	-	-	-	-	-127	-140	-115	-128	-103	-116

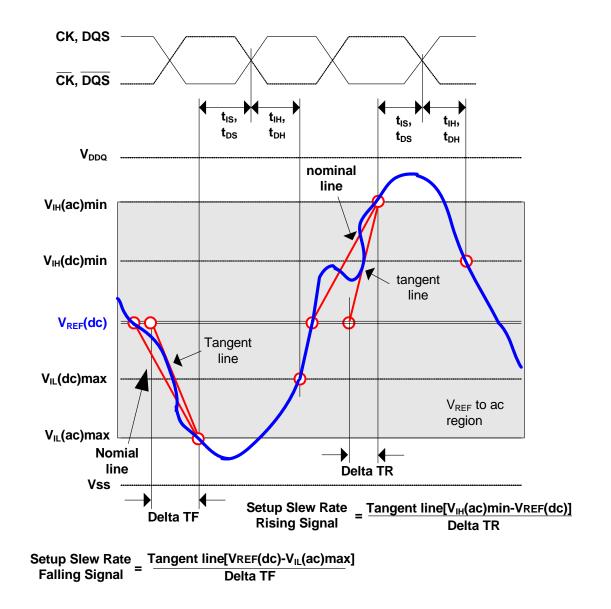
8. tDS and tDH derating


1) For all input signals the total tDS(setup time) and tDH(hold time) required is calculated by adding the datasheet value to the derating value listed in Table x.

Setup(tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vih(ac)min. Setup(tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded ' VREF(dc) to ac region', use nominal slew rate for derating value(see Fig a.) If the actual signal is later than the nominal slew rate line anywhere between shaded 'VREF(dc) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value(see Fig b.)

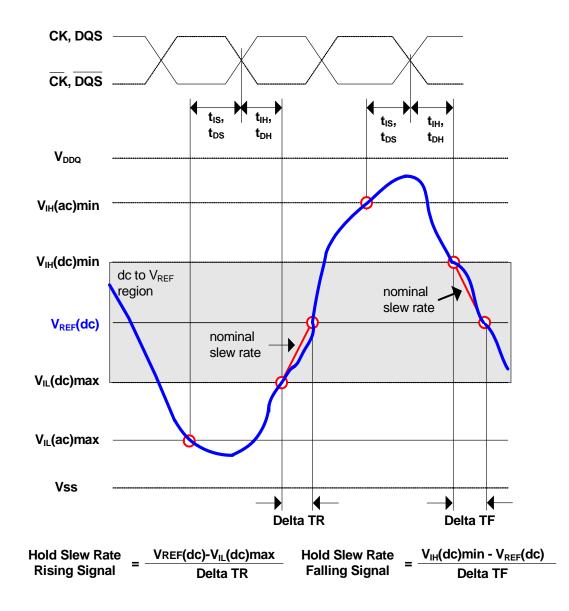
Hold(tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc) max and the first crossing of VREF(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc) min and the first crossing of VREF(dc). If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to VREF(dc) region', the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value(see Fig d.)

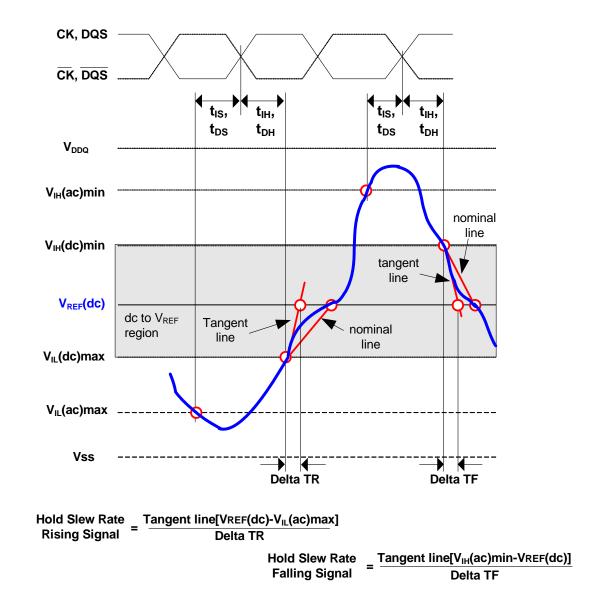
Although for slow slew rates the total setup time might be negative(i.e. a valid input signal will not have reached VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac). For slew rate in between the values listed in table x, the derating valued may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization.


Fig. a Illustration of nominal slew rate for tIS,tDS

HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

ициіх


Fig. -b Illustration of tangent line for tIS,tDS


HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

ициіх

Fig. -c Illustration of nominal line for tIH, tDH

Fig. -d Illustration of tangent line for tIH , tDH

9. tIS and tIH (input setup and hold) derating

	tIS, tIH Derating Values													
			CK,	CK Differe	ntial Slew	Rate								
		2.0	V/ns	1.5	V/ns	1.0	V/ns							
		∆tIS	∆tlH	∆tlS	∆tlH	∆tIS	∆tlH	Units	Notes					
	4.0	+187	+94	TBD	TBD	TBD	TBD	ps	1					
	3.5	+179	+89	TBD	TBD	TBD	TBD	ps	1					
	3.0	+167	+83	TBD	TBD	TBD	TBD	ps	1					
	2.5	+150	+75	TBD	TBD	TBD	TBD	ps	1					
	2.0	+125	+45	TBD	TBD	TBD	TBD	ps	1					
	1.5	+83	+21	TBD	TBD	TBD	TBD	ps	1					
	1.0	+0	0	TBD	TBD	TBD	TBD	ps	1					
Command /	0.9	-11	-14	TBD	TBD	TBD	TBD	ps	1					
Address	0.8	-25	-31	TBD	TBD	TBD	TBD	ps	1					
Slew	0.7	-43	-54	TBD	TBD	TBD	TBD	ps	1					
rate(V/ns)	0.6	-67	-83	TBD	TBD	TBD	TBD	ps	1					
	0.5	-100	-125	TBD	TBD	TBD	TBD	ps	1					
	0.4	-150	-188	TBD	TBD	TBD	TBD	ps	1					
	0.3	-223	-292	TBD	TBD	TBD	TBD	ps	1					
	0.25	-250	-375	TBD	TBD	TBD	TBD	ps	1					
	0.2	-500	-500	TBD	TBD	TBD	TBD	ps	1					
	0.15	-750	-708	TBD	TBD	TBD	TBD	ps	1					
	0.1	-1250	-1125	TBD	TBD	TBD	TBD	ps	1					

1) For all input signals the total tIS(setup time) and tIH(hold) time) required is calculated by adding the datasheet value to the derating value listed in above Table.

Setup(tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of $V_{REF}(dc)$ and the first crossing of $V_{IH}(ac)min$. Setup(tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of $V_{REF}(dc)$ and the first crossing of $V_{IL}(ac)max$. If the actual signal is always earlier than the nominal slew rate for line between shaded ' $V_{REF}(dc)$ to ac region', use nominal slew rate for derating value(see fig a.) If the actual signal is later than the nominal slew rate in anywhere between shaded ' $V_{REF}(dc)$ to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value(see Fig b.)

Hold(tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first crossing of V_{REF}(dc). Hold(tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V_{REF}(dc). If the actual signal is always later than the nominal slew rate line between shaded 'dc to V_{REF}(dc) region', use nominal slew rate for derating value(see Fig.c) If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to V_{REF}(dc) region', the slew rate of a tangent line to the actual signal from the dc level to V_{REF}(dc) level is used for derating value(see Fig d.)

Although for slow rates the total setup time might be negative(i.e. a valid input signal will not have reached $V_{IH/IL}(ac)$ at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach $V_{IH/IL}(ac)$.

For slew rates in between the values listed in table, the derating values may obtained by linear interpolation.

These values are typically not subject to production test. They are verified by design and characterization.

10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.

11. MIN (t CL, t CH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for t CL and t CH). For example, t CL and t CH are = 50% of the period, less the half period jitter (t JIT(HP)) of the clock source, and less the half period jitter due to crosstalk (t JIT(crosstalk)) into the clock traces.

12. t QH = t HP - t QHS, where:

tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for:

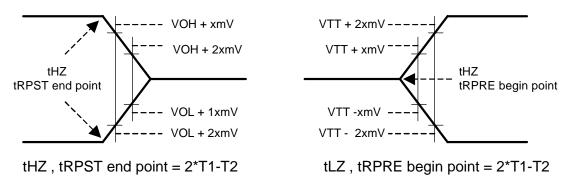
- 1) The pulse duration distortion of on-chip clock circuits; and
- 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.

13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS/ DQS and associated DQ in any given cycle.

14. t DAL = (nWR) + (tRP/tCK):

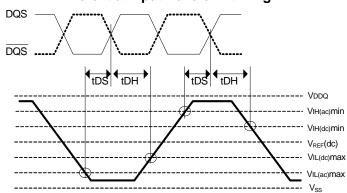
For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the application clock period. nWR refers to the t WR parameter stored in the MRS. Example: For DDR533 at t CK = 3.75 ns with t WR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks=8 clocks.

15. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during precharge power-down, a specific procedure is required as described in section 2.9.


- 16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
- 17. ODT turn off time min is when the device starts to turn off ODT resistance.

ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.

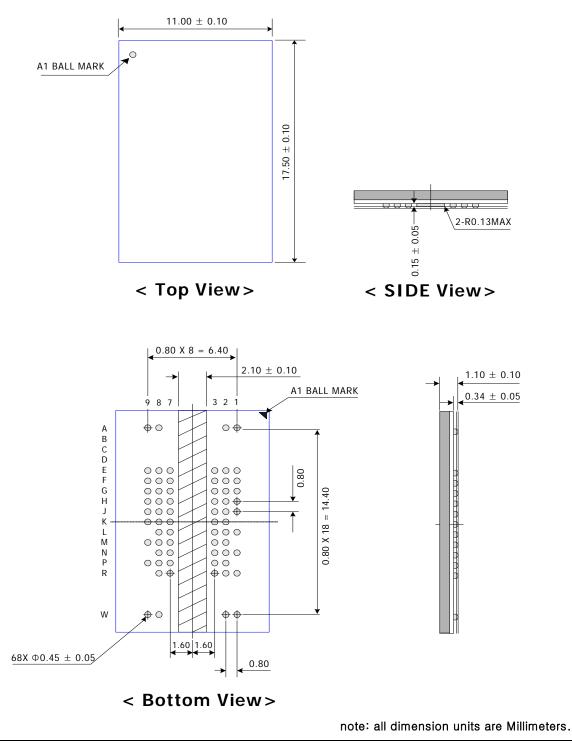
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. Thesed parameters are referenced to a specific voltage level which specifies when the device output is no longer driving(tHZ), or begins driving (tLZ). Below figure shows a method to calculate the point when device is no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistenet.


HY5PS1G431A(L)FP HY5PS1G831A(L)FP HY5PS1G1631A(L)FP

19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Below figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE). Below Figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE). Below Figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.

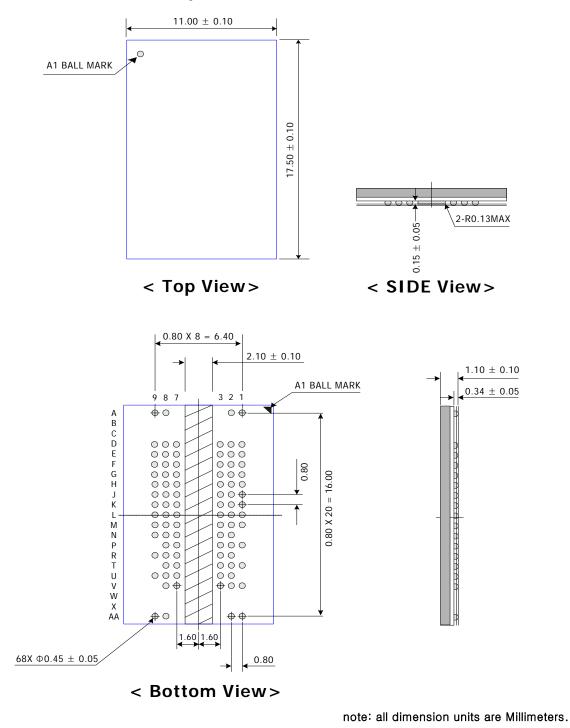
20. Input waveform timing with differential data strobe enabled MR[bit10] =0, is referenced from the input signal crossing at the $V_{IH}(ac)$ level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the $V_{IL}(ac)$ level to the differential data strobe crosspoint for a falling signal applied to the device under test.

21. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the V_{IH} (dc) level to the differential data strobe crosspoint for a rising signal and V_{IL} (dc) to the differential data strobe crosspoint for a falling signal applied to the device under test.


Differential Input waveform timing

22. Input waveform timing is referenced from the input signal crossing at the $V_{IH}(ac)$ level for a rising signal and $V_{IL}(ac)$ for a falling signal applied to the device under test.

23. Input waveform timing is referenced from the input signal crossing at the $V_{IL}(dc)$ level for a rising signal and $V_{IH}(dc)$ for a falling signal applied to the device under test.


5. Package Dimensions Package Dimension(x4,x8)

Package Dimension(x16)

92Ball Fine Pitch Ball Grid Array Outline

