

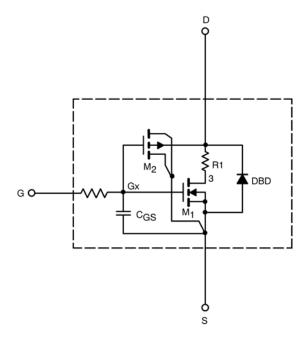
SPICE Device Model Si4910DY

Vishay Siliconix

N-Channel 40-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

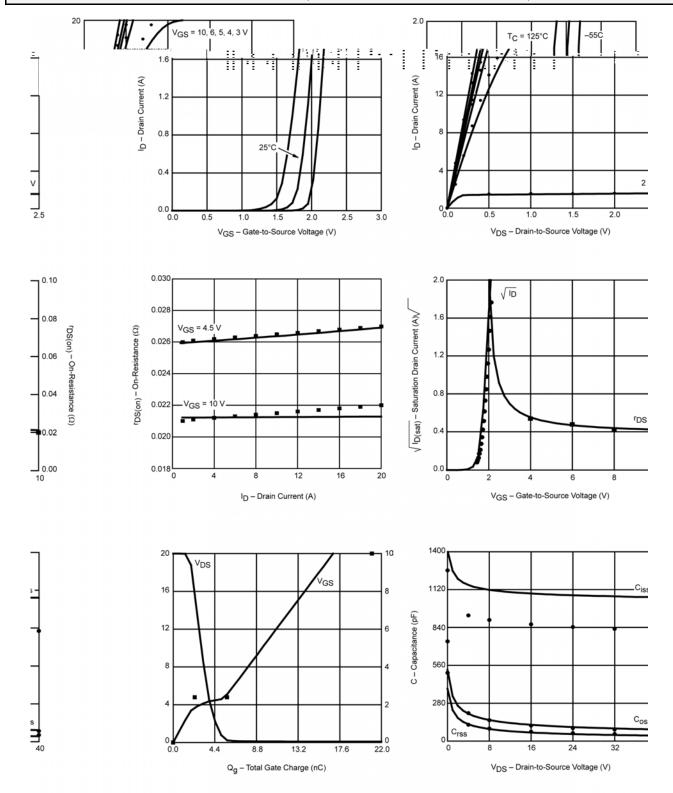
SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 74168 S-60411—Rev. A, 20-Mar-06

SPICE Device Model Si4910DY

Vishay Siliconix


SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERV	VISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-	-	
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μ A	1.2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	224		Α
Drain-Source On-State Resistance ^a	Γ _{DS(on)}	V _{GS} = 10 V, I _D = 6 A	0.021	0.022	Ω
		V_{GS} = 4.5 V, I_{D} = 4.8 A	0.026	0.026	
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 6 A	17	20	S
Forward Voltage ^a	V _{SD}	I _S = 1.5 A	0.83	0.73	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 20 V, V _{GS} = 0 V, f = 1 MHz	1085	855	pF
Output Capacitance	Coss		111	105	
Reverse Transfer Capacitance	C _{rss}		58	65	
Total Gate Charge	Q_g	V _{DS} = 20 V, V _{GS} = 10 V, I _D = 5 A	17	21	nC
		V _{DS} = 20 V, V _{GS} = 4.5 V, I _D = 5 A	9	9.6	
Gate-Source Charge	Q_{gs}		2.3	2.3	
Gate-Drain Charge	Q_{gd}		3.2	3.2	

a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si4910DY Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.