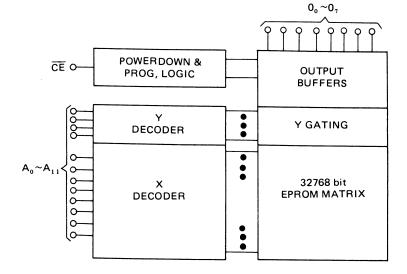
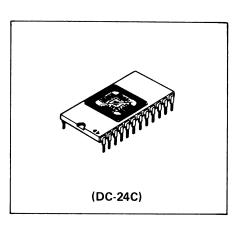
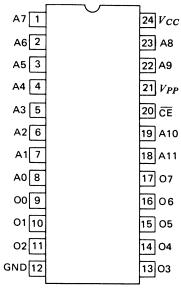
HN462532

4096-word \times 8-bit UV Erasable and Programmable Read Only Memory


The HN462532 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.


FEATURES

٠


- Single Power Supply +5V ±5%
 - Simple Programming Program Voltage: +25V D.C. Program with One 50ms Pulse
- Static No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Modes
- Fully Decoded On-Chip Address Decode
- Access Time 450ns (Max.)
- Low Power Dissipation 858mW (Max.) Active Power 201mW (Max.) Standby Power
 Three State Output OR-Tie Capability
- Compatible with TMS2532
- -----

BLOCK DIAGRAM

PIN ARRANGEMENT

(Top View)

MODE SELECTION

Pins	CE (20)	V _{PP} (21)	V _{CC} (24)	Outputs (9 to 11, 13 to 17)
Read	VIL	+5	+5	Dout
Stand by	V _{IH}	+5	+5	High Z
Program	Pulsed VIH to VIL	+25	+5	Din
Program Inhibit	V _{IH}	+25	+5	High Z

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
All Input and Output Voltages*	V _{IN} , V _{out}	-0.3 to +7	V
VPP Voltage*	V _{PP}	-0.3 to +28	V
Operating Temperature Range	Topr	0 to +70	°C
Storage Temperature Range	T _{stg}	65 to +125	°C

*with respect to GND.

READ OPERATION

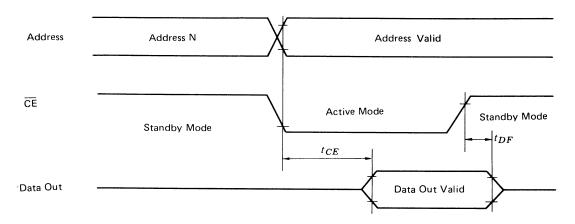
• D.C. AND OPERATING CHARACTERISTICS ($T_a = 0 \text{ to } + 70^{\circ}\text{C}$, $V_{CC} = 5\text{V} \pm 5\%$, $V_{PP} = V_{CC} \pm 0.6\text{V}$)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Input Leakage Current	I _{LI}	Vin = 5.25 V		-	10	μA
Output Leakage Current	ILO	$V_{out} = 5.25 \vee / 0.4 \vee$	-	-	10	μA
VPP Current	IPP1	<i>Vpp</i> = 5.85 V	-	-	12	mA
Vcc Current (Standby)	Icc1	$\overline{CE} = V_{IH}$	-	-	25	mA
VCC Current (Active)	Icc2	$\overline{CE} = V_{IL}$	-	-	150	mA
Input Low Voltage	V _{IL}		-0.1	-	0.8	V
Input High Voltage	V _{IH}		2.0	-	<i>V</i> _{CC} +1	V
Output Low Voltage	Vol	<i>I</i> _{OL} = 2.1 mA	-	-	0.4	V
Output High Voltage	Voh	$I_{OH} = -400 \mu A$	2.4	-	-	V

Notes: Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.

• AC CHARACTERISTICS ($T_a = 0 \text{ to } + 70^{\circ}\text{C}$, $V_{CC} = 5\text{V} \pm 5\%$, $V_{PP} = V_{CC} \pm 0.6 \text{V}$)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Address to Output Delay	tACC	$\overline{CE} = V_{IL}$	-	-	450	ns
CE to Output Delay	t _{CE}		_	-	450	ns
CE High to Output Float	t _{DF}		0	_	100	ns
Address to Output Hold	t _{OH}	$\overline{CE} = V_{IL}$	0		_	ns


HN462532

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Levels: Input Rise and Fall Times: Output Load: Reference Level for Measuring Timing:

0.8V to 2.2V ≤20ns 1TTL Gate + 100pF Inputs; 1V and 2V, Outputs; 0.8V and 2V

• **CAPACITANCE** ($T_a = 25^{\circ}C, f = 1 \text{ MHz}$)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Input Capacitance	Cin	$V_{in} = 0 V$			6	pF
Output Capacitance	Cout	$V_{out} = 0V$	-	-	12	pF

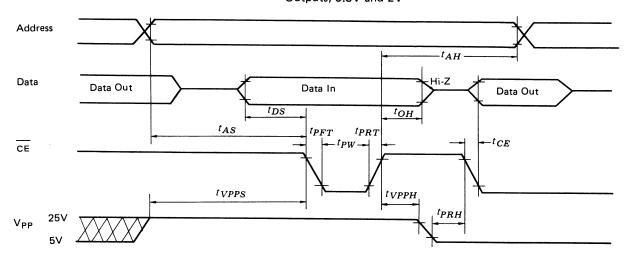
PROGRAMMING OPERATION

• DC PROGRAMMING CHARACTERISTICS ($T_a = 25^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{PP} = 25V \pm 1V$)

Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Input Leakage Current	ILI	$V_{in} = 5.25 V / 0.4 V$	-	-	10	μA
VPP Supply Current During Programming	IPP2	$\overline{CE} = V_{IL}$	-	-	30	mA
VCC Supply Current	Icc		_	_	150	mA
Input Low Level	VIL		-0.1	_	0.8	v
Input High Level	VIH		2.0	_	Vcc+1	v

112

• AC PROGRAMMING CHARACTERISTICS ($T_a = 25^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{PP} = 25V \pm 1V$)


Parameter	Symbol	Test Conditions	min.	typ.	max.	Unit
Address Setup Time	t _{AS}		2	_	-	μs
Data Setup Time	t _{DS}		2		_	μs
Address Hold Time	t _{AH}	······································	2	-	_	μs
Data Hold Time	t _{DH}		2	-	_	μs
Setup Time from VPP	tVPPS	······································	0	_	_	ns
Program Pulse Hold Time	t _{PRH}		0	_	_	ns
V _{PP} Hold Time	t _{VPPH}		0	_	_	ns
Program Pulse Width	t _{PW}		45	50	55	ms
Program Pulse Time	tPRT		5	_	-	ns
Program Pulse Time	tPFT		5	_		ns

Note: VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Level:	0.8V to 2.2V
Input Rise and Fall Times:	≤20ns
Output Load:	1TTL Gate + 100pF
Reference Level for Measuring Timing:	Inputs; 1V and 2V,
	Outputs; 0.8V and 2V

•ERASE

Erasure of HN462532 is performed by exposure to ultraviolet light with a wavelength of 2537Å, and all the output data are changed to "1" after this erasure procedure.

The minimum integrated close (i.e., UV intensity x exposure time) for erasure is $15W \cdot sec/cm^2$.

