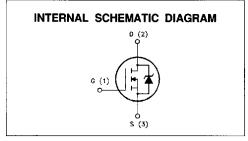

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS


TYPE	Voss	R _{DS(on)}	ID
IRF820	500 V	< 3 Ω	3 A
IRF820FI	500 V	< 3 Ω	2.2 A
IRF822	500 V	< 4 Ω	2.8 A
IRF822F1	500 V	< 4 Ω	1.9 A

- TYPICAL R_{DS(on)} = 2.5 Ω
- AVALANCHE RÜGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLIES (SMPS)
- CHOPPER REGULATORS, CONVERTERS, MOTOR CONTROL, LIGHTING FOR INDUSTRIAL AND CONSUMER ENVIRONMENT

ABSOLUTE MAXIMUM RATINGS

	Voltage (V _{GS} = 0)	820 500	822 500	820FI	822FI	
						ļ
		500	500	500		
VDGR Drain- gate			000	500	500	V
	/oltage ($R_{GS} = 20 \ k\Omega$)	500	500	500	500	V
V _{GS} Gate-source	Voltage		± 20			V
ID Drain Currer	t (cont.) at T _c = 25 °C	3	2.8	2.2	1.9	Α
ID Drain Currer	t (cont.) at $T_c = 100 \ ^{\circ}C$	1.9	1.7	1.4	1.2	Α
IDM(•) Drain Currer	t (pulsed)	12	12	12	12	A
Ptot Total Dissipa	tion at $T_c = 25 ^{\circ}C$	7	5	35		W
Derating Fac	tor	0	.6	0.	28	W/°C
T _{stg} Storage Terr	perature		-65 t	o 150	÷	°C
Tj Max. Operat	ng Junction Temperature		1	50		°C

THERMAL DATA

			TO-220	ISOWATT220	
R _{thj-case}	Thermal Resistance Junction-case	Max	1.66	3.57	°C/W
R _{thj-amb} R _{thc-s} T _l	Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering F	Max Typ Purpose		62.5 0.5 300	°C/W °C/W °C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
l _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, $\delta < 1\%$)	3	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_i = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 25 \text{ V}$)	225	mJ
EAR	Repetitive Avalanche Energy (pulse width limited by T ₁ max, $\delta < 1\%$)	6	mJ
IAR	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 \ ^{\circ}C, pulse width limited by T_j max, \delta < 1\%)$	1.9	A

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V(BR)DSS	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	500			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating x 0.8$ $T_c = 125 °C$			250 1000	μΑ μΑ
lgss	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VGS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V I _D = 1.5 A for IRF820/820FI for IRF822/822FI		2.5 2.5	3 4	Ω Ω
ID(on)	On State Drain Current	$\label{eq:VDS} \begin{array}{l} V_{DS} > I_{D(on)} \ x \ R_{DS(on)max} & V_{GS} = 10 \ V \\ for \ IRF820/820FI \\ for \ IRF822/822FI \end{array}$	3 2.8			A

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gts (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 1.5 \text{ A}$	0.8	1.93		S
Ciss Coss Crss	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 V f = 1 MHz V_{GS} = 0$		350 60 25	460 80 35	pF pF pF

2/6 194

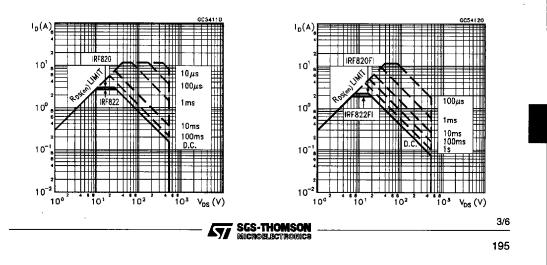
SGS-THOMSON

7929237 0045702 965 **mm** SGTH

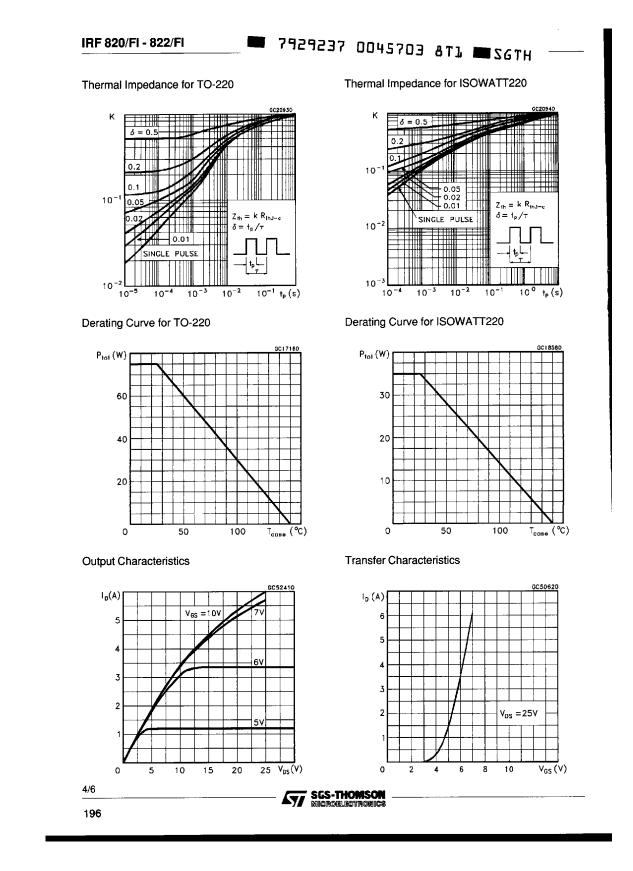
IRF 820/FI - 822/FI

ELECTRICAL CHARACTERISTICS (continued) SWITCHING RESISTIVE LOAD

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} tr td(off) tf	Turn-on Time Rise Time Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD}=250 \ V & I_D=1.5 \ A \\ R_G=50 \ \Omega & V_{GS}=10 \ V \\ (see \ test \ circuit) \end{array} $		35 85 165 60	45 110 215 80	ns ns ns ns
Qg	Total Gate Charge	$I_D = 3 A$ $V_{GS} = 10 V$ $V_{DD} = Max Rating x 0.8$ (see test circuit)		25 6 11	35	nC nC nC

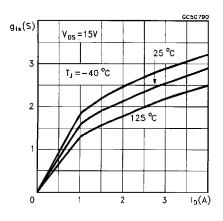

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ISD ISDM(•)	Source-drain Current Source-drain Current (pulsed)				3 12	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 3 A V_{GS} = 0$			1.6	V
trr	Reverse Recovery Time	$I_{SD} = 3 A$ di/dt = 100 A/µs V _{DD} = 100 V T _i = 150 °C		380		ns
Qrr	Reverse Recovery Charge	,		3.8		μC

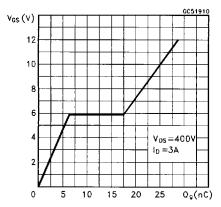

(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

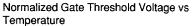
Safe Operating Area for ISOWATT220

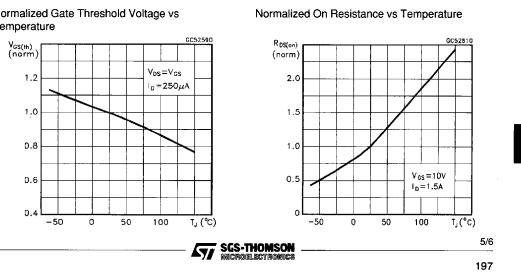
Downloaded from Elcodis.com electronic components distributor



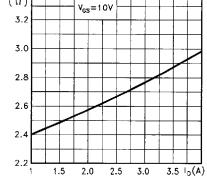
■ 7929237 0045704 738 ■ SGTH

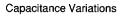

IRF 820/FI - 822/FI

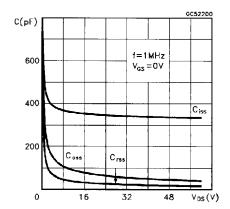

GC51320



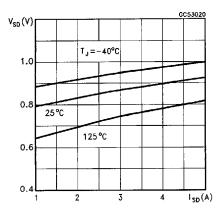
Gate Charge vs Gate-source Voltage

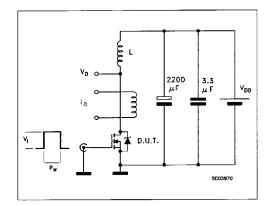




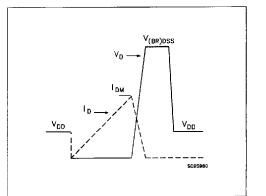


R_{DS(on)} (Ω)

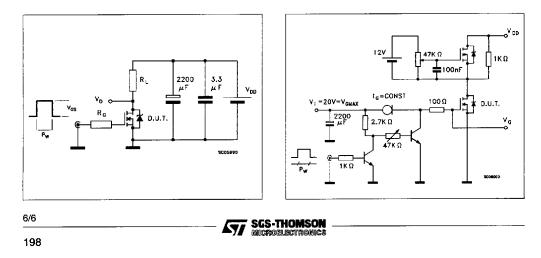

Static Drain-source On Resistance



Source-drain Diode Forward Characteristics



Unclamped Inductive Load Test Circuit



Switching Time Test Circuit

Unclamped Inductive Waveforms

