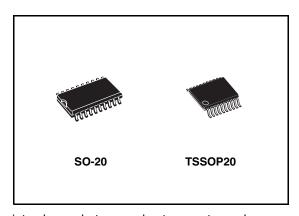


Multiple RS-232 drivers and receivers


General features

- Meets and exceeds the requirements of EIA/TIA-232-E and ITUV.28 standard
- Single chip with easy interface between UART and serial port connector of IBM PC/ATTM and compatibles
- Designed to support data rates up to 120kbps
- Pinout compatible with ST75C185

Description

The ST75185 contains three drivers and five receivers. The pinout matches the DB9S connector design in order to decrease the part count, reduce the board space required and allow easy interconnection of the UART and serial port connector of IBM PC/ATTM and compatibles. The bipolar circuits and processing of the ST75185 provides a rugged low-cost solution for this function at the expense of quiescent power and external passive components relative to the ST75C185.

The ST75185 complies with the requirements of the EIA/TIA 232-E and ITU (formally CCITT) v.28 standards. These standards are for data

interchange between a host computer and peripheral at signalling rates up to 20k-bits/s. The switching speeds of the ST75185 are fast enough to support rates up to 120K-bits/s with lower capacitive loads (shorter cables). Interoperability at the higher signalling rates cannot be assured unless the designer has design control of the cable and the interface circuits at the both ends. For interoperability at signalling rates to 120 K-bits/s, use of EIA/ITA-423-B (ITU v.10) and EIA/ITA-422-B (ITU v.11) standards are recommended.

The ST75185 is characterized for operation over the range of 0°C to 70°C.

Order code

Part number	Temperature range	Package	Packaging
ST75185CTR	0 to 70 °C	TSSOP20 (Tape & Reel)	2500 parts per reel
ST75185CDR	0 to 70 °C	SO-20 (Tape & Reel)	1000 parts per reel

June 2006 Rev 16 1/21

www.st.com

Contents ST75185

Contents

1	Pin configuration 3
2	Maximum ratings 4
3	Electrical characteristics 5
4	Typical application 8
5	Typical characteristics
6	Application information: diodes on power supply 14
7	Package mechanical data15
8	Revision history

ST75185 Pin configuration

1 Pin configuration

Figure 1. Pin connection IEC logic symbol and logic diagram

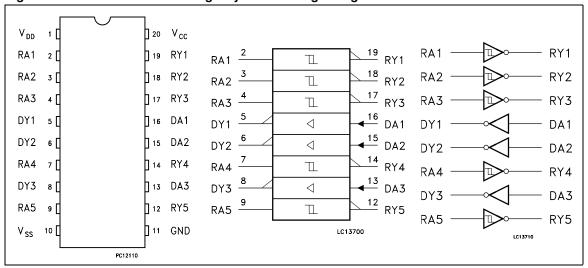


Table 1. Pin description

Pin N°	Symbol	Name and function
1	V_{DD}	Supply voltage (+12V)
2	RA1	First receiver input
3	RA2	Second receiver input
4	RA3	Third Receiver Input
5	DY1	First driver output
6	DY2	Second driver output
7	RA4	Fourth receiver input
8	DY3	Third driver output
9	RA5	Fifth receiver input
10	V _{SS}	Supply voltage (-12V)
11	GND	Ground
12	RY5	Fifth receiver output
13	DA3	Third driver input
14	RY4	Fourth receiver output
15	DA2	Second driver input
16	DA1	First driver input
17	RY3	Third receiver output
18	RY2	Second receiver output
19	RY1	First Receiver Output
20	V _{CC}	Supply Voltage (+5V)

Maximum ratings ST75185

2 Maximum ratings

Table 2. Absolute maximum ratings over operating free-air temperature range

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage (Note: 1)	15	V
V _{SS}	Supply voltage (Note: 1)	-15	٧
V _{CC}	Supply voltage (Note: 1)	10	V
V _I	Input voltage range (Driver)	-15 to 7	٧
VI	Input voltage range (Receiver)	-30 to 30	٧
V _O	Output voltage range (Driver)	-15 to 15	V
Io	Receiver low level output current	20	mA
P _D	Continuous total power dissipation	See dissipation rating table	
T _A	Operating free-air temperature range	0 to 70	°C
T _{STG}	Storage temperature range	-65 to + 150	°C
T_L	Lead temperature 1.6mm from case for 10 sec	260	°C

Note: Absolute Maximum Ratings are those values beyond which damage to the device may

occur. Functional operation under these condition is not implied.

Note: 1 All voltage are with respect to the network ground terminal.

Table 3. Dissipation rating table

Package	Power rating	Derating factor ⁽¹⁾	Power rating
	at T _A ⊴25°C	above T _A = 25°C	at T _A <i>≤</i> 70°C
MICROPACKAGE (D)	1125 mW	9.0 mW/°C	720 mW

^{1.} This is the reverse of the traditional junction-case thermal resistance R_{tJ-C}

Table 4. Recommended operating conditions

Symbol	Parameter	Min	Max	Unit	
V _{DD}	Supply voltage		7.5	15	V
V _{SS}	Supply voltage		-7.5	-15	٧
V _{CC}	Supply voltage	4.5	5.5	V	
V _I	Driver input voltage	0	V _{CC}	٧	
	High level output current Driver Receiver			-6	mA
ІОН				-0.5	IIIA
	Low level output ourrent	Driver		6	mA
l _{OL}	Low level output current Receiver			16	IIIA
T _A	Operating free-air temperature range		0	70	°C

3 Electrical characteristics

Table 5. Supply currents

Cumbal	Downwater	1	Test Conditions			Value		
Symbol	Parameter	V _{DD}	V _{SS}		Min.	Тур.	Max.	Unit
		9	-9	No load.			15	
		12	-12	all inputs at			19	mA
	Supply ourrant from V	15	-15	1.9V			25	
I _{DD} Supply cui	Supply current from V _{DD}	9	-9	No load.			4.5	
		12	-12	all inputs at 0.8V			5.5	mA
		15	-15				9	
		9	-9	No load.			-15	
		12	-12	all inputs at			-19	mA
	Cupply ourrant from V	15	-15	1.9V			-25	
I _{SS}	Supply current from V _{SS}	9	-9	No load.			-3.2	
		12	-12	all inputs at			-3.2	mA
		15	-15	0.8V			-3.2	
I _{CC}	Supply current from V _{CC}	No le	oad. All inp				30	mA

Electrical characteristics ST75185

Table 6. Driver electrical characteristics over operating free-air temperature range $(V_{DD} = 9V, V_{SS} = -9V, V_{CC} = 5V, unless otherwise specified)$

Symbol	Parameter Test	Test Conditions		Value		
Symbol	Farameter	rest Conditions	Min.	Тур.	Max.	Unit
V _{OH}	High Level Output Voltage	$V_{IL} = 0.8 \text{ V}, R_L = 3K\Omega$ (See <i>Figure 3</i> .)	6	7.5		V
V _{OL}	Low Level Output Voltage (Note 3)	V_{IH} = 1.9 V, R_L = 3K Ω (See <i>Figure 3</i> .)		-7.5	-6	V
I _{IH}	High Level Input Current	V _I = 5 V (See <i>Figure 4.</i>)			10	μΑ
I _{IL}	Low Level Input Current	V _I = 0 V (See <i>Figure 4.</i>)			-1.6	mA
I _{OS(H)}	High Level Short Circuit Output Current (Note 4)	$V_{IL} = 0.8 \text{ V}, V_O = 0 \text{ V}$ (See <i>Figure 3</i> .)	-4.5	-12	-19.5	mA
I _{OS(L)}	Low Level Short Circuit Output Current	$V_{IH} = 2 V V_O = 0 V$ (See <i>Figure 3</i> .)	4.5	12	19.5	mA
R _O	Output Resistance	$V_{DD} = V_{SS} = V_{CC} = 0 \text{ V}$ $V_{O} = -2 \text{ to 2 V } (Note 5)$	300			W

Note: 3 The algebraic convention, where the more positive (less negative) limits designated as maximum, is used in this datasheet for logic levels only (e.g. if - 10V is a maximum, the typical value is a more negative voltage).

- 4 Output short circuit conditions must maintain the total power dissipation below absolute maximum ratings.
- 5 Test conditions are those specified by EIA-232-E and as listed above.

Table 7. Driver switching characteristics $(V_{DD} = 12V, V_{SS} = -12V, V_{CC} = 5V, T_A = 25 \, ^{\circ}C)$

Symbol	Parameter	Test Conditions	Value			Unit
Syllibol	Faranteter	rest Conditions	Min.	Тур.	Max.	Oilit
t _{PLH}	Propagation Delay Time, Low to High Level Output	$R_L = 3 \text{ to } 7 \text{ K}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		315	500	ns
t _{PHL}	Propagation Delay Time, High to Low Level Output	$R_L = 3 \text{ to } 7 \text{ K}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		75	175	ns
	. Transition Time Low to High Level	$R_L = 3 \text{ to } 7 \text{ K}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		60	100	ns
t _{TLH} Output	Output	$R_L = 3 \text{ to } 7 \text{ K}\Omega$ $C_L = 2500 \text{ pF}$ (Note 6, Figure 5, Figure 6)		1.7	2.5	μs
t	Transition Time High to Low Level	$R_L = 3 \text{ to } 7 \text{ K}\Omega$ $C_L = 15 \text{ pF}$ (See <i>Figure 5</i> , <i>Figure 6</i>)		40	7.5	ns
t _{THL}	Output	$R_L = 3 \text{ to } 7 \text{ K}\Omega$ $C_L = 2500 \text{ pF}$ (Note 6, Figure 5, Figure 6)		1.5	2.5	μs

⁶ Measured between -3V and 3V points of output waveform (EIA-232-E conditions), all unused inputs are tied.

Table 8. Receiver electrical characteristics over operating conditions

Symbol	Parameter	Test Conditions			Value		Unit
Symbol	Faiametei			Min.	Тур.	Max.	Oilit
V _{T+}	Positive Going Threshold Voltage	(See Figure 9)			2.2	2.4	V
V _{T-}	Negative Going Threshold Voltage	T _A = 25 °C (Se	e <i>Figure 9</i>)	0.75	0.97		V
V _{hys}	Input Hysteresis (V _T + - V _T)			0.5			V
V	High Level Output Voltage	1 0.5mA	V _{IH} = 0.75 V	2.6	4	5	V
V _{OH}		$I_{OH} = -0.5 \text{mA}$	Inputs Open	2.6			v
V _{OL}	Low Level Output Voltage	$V_I = 3 V I_{OL}$	= 10 mA		0.2	0.45	V
	Lliab Laval Innest Commant	V _I = 25 V (Se	e <i>Figure 9</i>)	3.6		8.3	Л
I _{IH}	High Level Input Current	V _I = 3 V (See <i>Figure 9</i>)		0.43			mA
	Low Lovel Input Current	V _I = -25 V (See	V _I = -25 V (See <i>Figure 9</i>)			-8.3	mΛ
I _{IL}	Low Level Input Current	V _I = -3 V (See <i>Figure 9</i>)		-0.43			mA
Ios	Short-Circuit Output Current	V _I = 0 V V _O (See <i>Figure 7</i>)	= 0 V		-3.4	-12	mA

Note: All typical values are at $T_A = 25$ °C, $V_{CC} = 5V$, $V_{DD} = 9V$ and V_{SS} =-9V

Table 9. Receiver switching characteristics $(V_{DD}=12V,\,V_{SS}=-12V,\,V_{CC}=5V\,T_A=25^{\circ}C)$

Symbol Parameter		Test Conditions	Value			Unit
Symbol	Faianietei	rest conditions		Тур.	Max.	o iii
t _{PLH}	Propagation Delay Time Low to High Level Output	$R_L = 5 \text{ K}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		400	1000	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	$R_L = 5 \text{ K}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		70	150	ns
t _{TLH}	Transition Time Low to High Level Output	$R_L = 5 \text{ K}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		200	525	ns
t _{THL}	Transition Time High to Low Level Output	$R_L = 5 \text{ K}\Omega$ $C_L = 50 \text{ pF}$ (See <i>Figure 9</i>)		20	60	ns

Typical application ST75185

4 Typical application

Figure 2. Application circuits

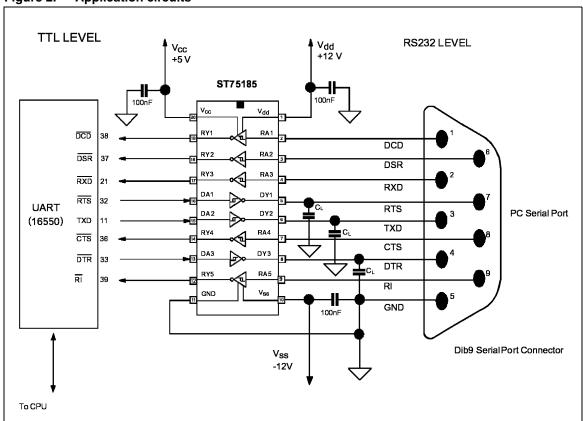
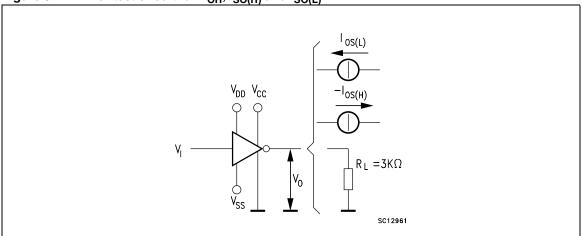



Figure 3. Driver test circuit for V_{OH} , $I_{SO(H)}$ and $I_{SO(L)}$

ST75185 Typical application

Figure 4. Driver test circuit for I_{IH} and I_{IL}

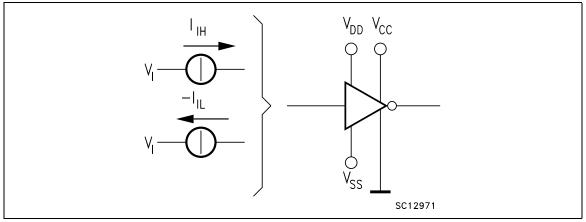
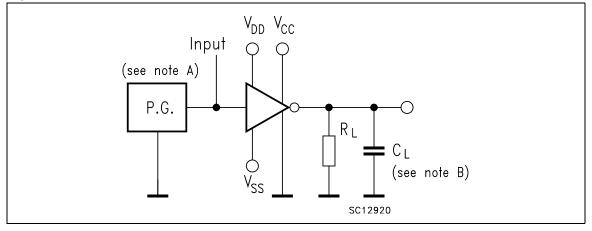



Figure 5. Driver test circuit

Typical application ST75185

Figure 6. Driver voltage waveforms

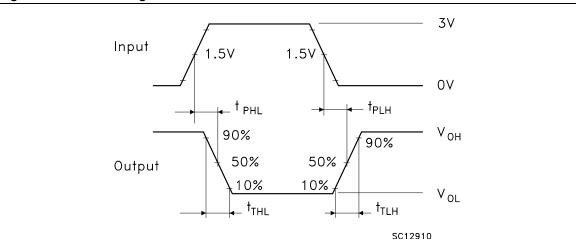


Figure 7. Receiver test circuit for I_{OS}

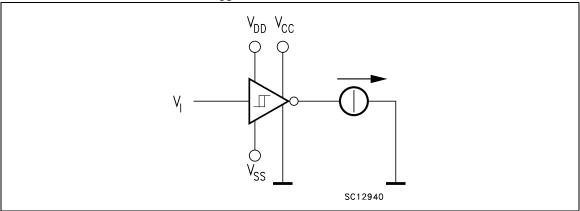
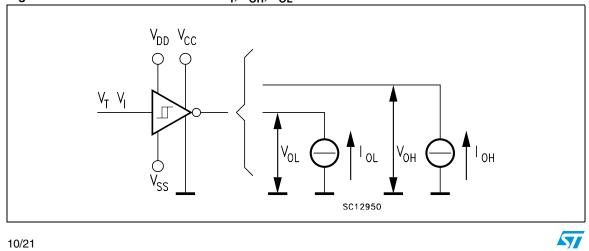



Figure 8. Receiver test circuit for V_T , V_{OH} , V_{OL}

ST75185 Typical application

Figure 9. Receiver test circuit

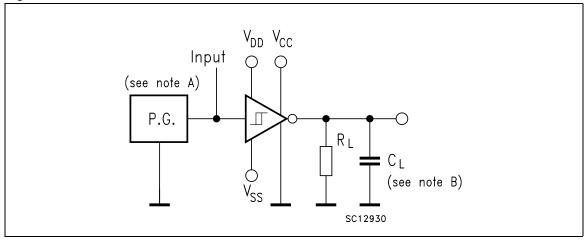
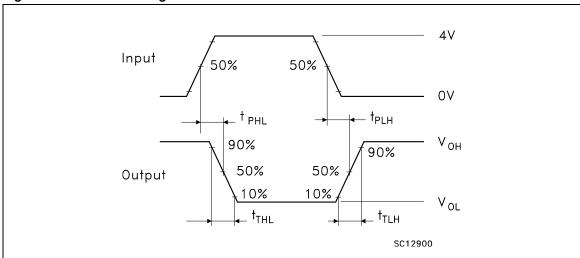



Figure 10. Receiver voltage waveforms

Note: 1 The pulse generator has the following characteristics: t_W = 25 μ s, PRR = 20KHz, Z_O = 50 Ω t_r = t_f < 50ns

2 C_L includes probe and jig capacitance.

5 Typical characteristics

Figure 11. Driver voltage transfer characteristics

Figure 12. Driver short circuit output current vs. free-air temperature

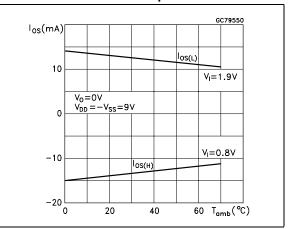


Figure 13. Device supply current vs temperature

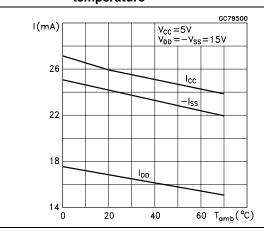


Figure 14. Driver output current vs output voltage

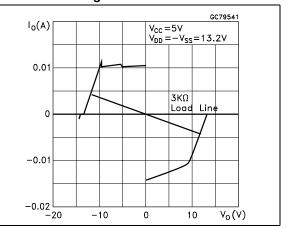
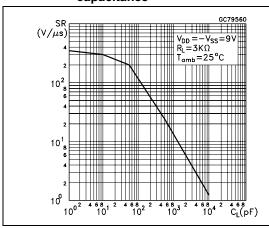



Figure 15. Driver output slew rate vs load capacitance

Figure 16. Receiver threshold vs temperature

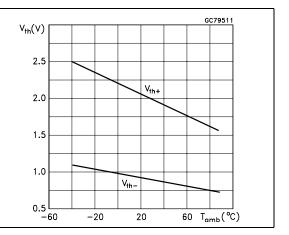
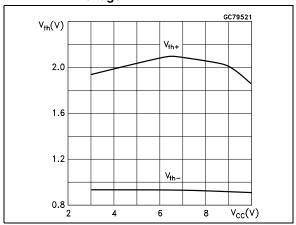
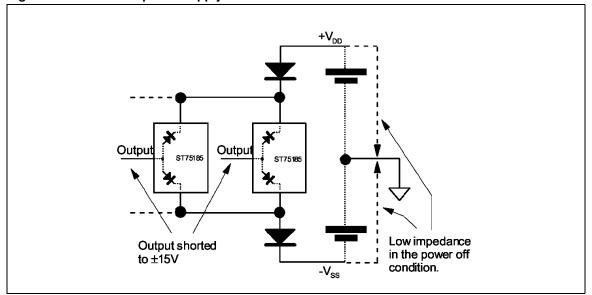



Figure 17. Receiver threshold vs supply voltage



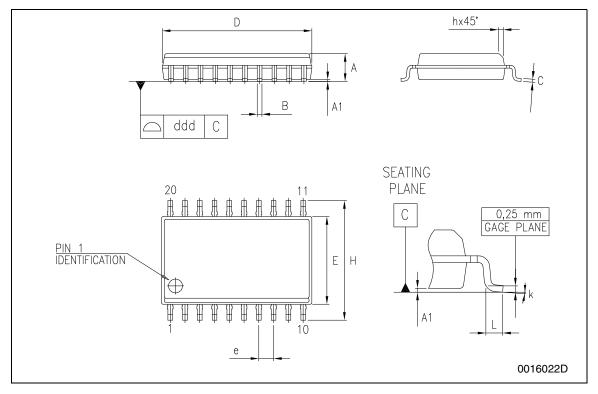
577

6 Application information: diodes on power supply

Diodes placed in series with the V_{DD} and V_{SS} leads protect the ST75185 in the fault condition in which the devices output are shorted to $\pm 15V$ and the power supplies are at low state and provide low-impedance path to ground (see Figure below).

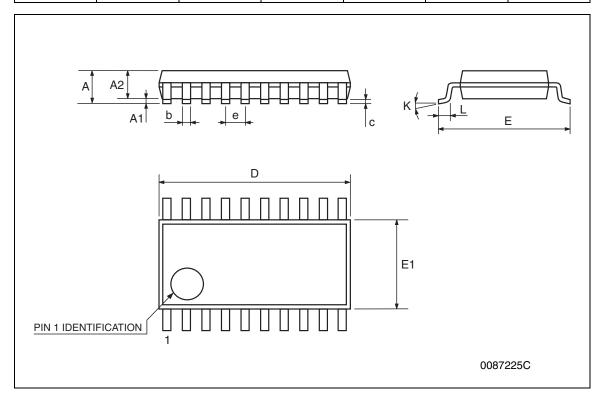
Figure 18. Diodes on power supply

57


7 Package mechanical data

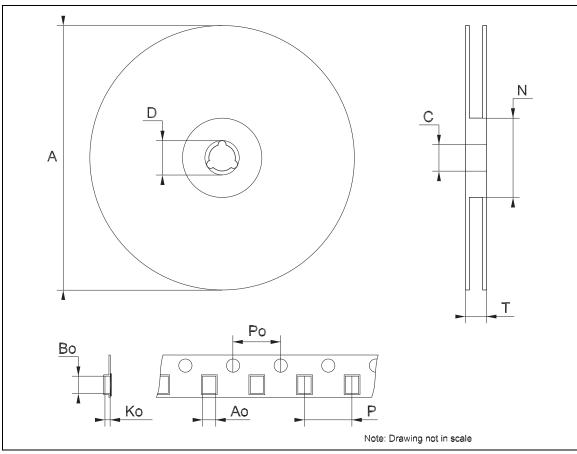
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

577


SO-20 MECHANICAL DATA

DIM	mm.			inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	2.35		2.65	0.093		0.104	
A1	0.1		0.30	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	12.60		13.00	0.496		0.512	
E	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10.00		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
k	0°		8°	0°		8°	
ddd			0.100			0.004	

TSSOP20 MECHANICAL DATA


DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

577


Tape & Reel SO-20 MECHANICA	AL DATA
-----------------------------	---------

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425		0.433
Во	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272		0.280
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Revision history ST75185

8 Revision history

Table 10. Revision history

Date	Revision	Changes
28-Apr-2006	15	Order codes has been updated and new template.
01-Jun-2006	16	Figure 2. updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

 ${\bf STMicroelectronics}\ group\ of\ companies$

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577