Her Land, 1

T-39-11

IRF720

IRF721

IRF722

IRF723

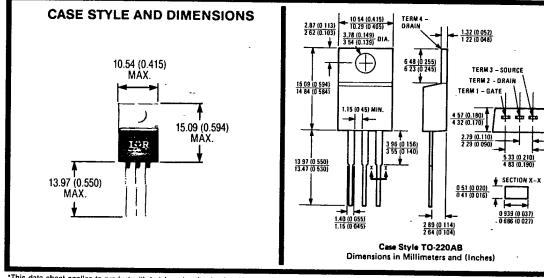
REPETITIVE AVALANCHE AND dv/dt RATED*

HEXFET® TRANSISTORS

400 Volt, 1.8 Ohm HEXFET TO-220AB Plastic Package

The HEXFET® technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

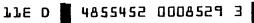
The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.


They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Product Summary

Part Number	BVDSS	R _{DS(on)}	ID	
IRF720	400V	1.8Ω	3.3A	
IRF721	350V	1.8Ω	3.3A	
IRF722	400V	2.5Ω	2.8A	
IRF723 *	350V	2.5Ω	2.8A	

FEATURES:


- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling

This data sheet applies to product with batch codes that begin with a digit, ie. 2A3B C-277

IRF720, IRF721, IRF722, IRF723 Devices

·· ·· ¥

- .

INTERNATIONAL RECTIFIER

T-39-11

۰.

.`.

Absolute Maximum Ratings

.

	Parameter	IRF720, IRF721	IRF722, IRF723	Units
ID @ Tc = 25°C Continuous Drain Current		3.3	2.8	A
ID @ TC = 100°C	Continuous Drain Current	2.1	1.8	- A
IDM	Pulsed Drain Current ①	13	11	A -
P _D @ T _C = 25°C	Max. Power Dissipation	5	0 -	` <u>w</u>
	Linear Derating Factor	0.4	40	W/K (\$)
V _{GS}	Gate-to-Source Voltage	t	V	
EAS	Single Pulse Avalanche Energy @		mJ .	
IAR	Avalanche Current ① (Repetitive or Non-Repetitive)	3. (See	A	
EAR	Repetitive Avalanche Energy ①	5. (See	mJ	
dv/dt	- Peak Diode Recovery dv/dt ③	4 (See F	V/ns	
TJ TSTG	Operating Junction Storage Temperature Range	-55	to 150	°C
	Lead Temperature	300 (0.063 in. (1.6mr	m) from case for 10s)	°C

Electrical Characteristics @ T_J = 25°C (Unless Otherwise Specified)

	Parameter	Туре	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	IRF720 IRF722	400	-	_	v	$V_{\rm GS} = 0V, I_{\rm D} = 250 \ \mu {\rm A}$.
		1RF721 IRF723	350				
R _{DS} (on)	Static Drain-to-Source On-State Resistance ④	IRF720 IRF721	-	1.6	1.8	n	$V_{GS} = 10V, I_{D} = 1.8A$
			-	1.8	2.5		••• - ·
I _{D(on)}	On-State Drain Current @	IRF720 IRF721	3.3	_	_	А	V _{DS} > I _{D(on)} X R _{DS(on)} Max.
		IRF722 IRF723	2.8				V _{GS} = 10V
VGS(th)	Gate Threshold Voltage	ALL	2.0	-	4.0	V	$V_{DS} = V_{GS}, I_D = 250\mu A$
9fs	Forward Transconductance ④	ALL	1.8	2.7	-	S (U)	$I_{DS} = 1.8A, V_{DS} \ge 50V$
IDSS	Zero Gate Voltage Drain Current	ALL	-		250	μA	$V_{DS} = Max. Rating, V_{GS} = 0V$
200	•		-		1000		V _{DS} = 0.8 x Max. Rating V _{GS} = 0V, T _J = 125°C
IGSS	Gate-to-Source Leakage Forward	ALL		-	500	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	ALL		-	-500	nA	$V_{GS} = -20V$
Qg	Total Gate Charge	ALL	-	13	20	nC	$V_{GS} = 10V$, $I_D = 3.3A$ $V_{DS} = 0.8 \times Max$. Rating
0 _{gs}	Gate-to-Source Charge	ALL	-	2.2	3.3	nC	See Fig. 16
Q _{gd}	Gate-to-Drain ("Miller") Charge			7.2	11	nC	(Independent of operating temperature)
td(on)	Turn-On Delay Time	ALL	- 1	10	15	ns	$V_{DD} = 200V, I_D \approx 3.3A, R_G = 18\Omega$
t _r	Rise Time	ALL	-	14	21	ns	$R_{D} = 56\Omega$
td(off)	Turn-Off Delay Time	ALL	-	30	45	ns	See Fig. 15 -
tf	Fall Time	ALL	-	13	20	ns	(Independent of operating temperature)
LD	Internal Drain Inductance	ALL	-	4.5	-	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.
LS	Internal Source Inductance	ALL	-	7.5	-	nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.
Ciss	Input Capacitance	ALL	-	350	-	рF	$V_{\rm GS} = 0V, V_{\rm DS} = 25V$
Coss	Output Capacitance	ALL	-	64		pF	f = 1.0 MHz
Crss	Reverse Transfer Capacitance	ALL	-	8.1	-	pF	See Fig. 10

÷., 4855452 0008530 0 JJE D

INTERNATIONAL RECTIFIER

IRF720, IRF721, IRF722, IRF723 Devices

T-39-11

Source-Drain Diode Ratings and Characteristics

e. 15

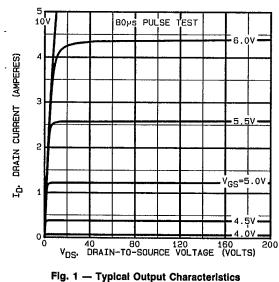
Parameter			Min.	Тур.	Max.	Units	Test Conditions	
IS Continuous Source Current (Body Diode)		ALL	-	-	3.3	A	Modified MOSFET symbol showing the integral Reverse p-n junction rectifier.	
ISM	Pulsed Source Current (Body Diode) ①	ALL	-	-	13	A		
V _{SD}	Diode Forward Voltage ④	ALL	-	-	1.6	v	$T_{J} = 25^{\circ}C, I_{S} = 3.3A, V_{GS} = 0V$	
t _{rr}	Reverse Recovery Time	ALL	120	270	600	ns	$T_J = 25^{\circ}C$, $I_F = 3.3A$, di/dt = 100 A/ μ s	
O _{RR}	Reverse Recovery Charge	ALL	0.64	1.4	3.0	μC	-	
ton	Forward Turn-On Time	ALL	Intrinsi	c turn-on	tíme is r	regligible	L Turn-on speed is substantially controlled by Ls + Ln-	

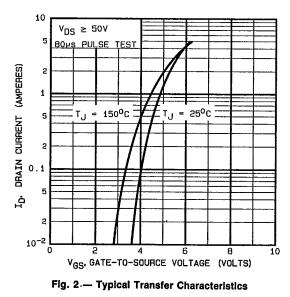
Thermal Resistance

R _{thJC}	Junction-to-Case	ALL	-	-	2.5	K/W @	
RthCS	Case-to-Sink	ALL		0.50	-	K/W (5)	Mounting surface flat, smooth, and greased
RthJA	Junction-to-Ambient	ALL	-	-	80	K/W @	Typical socket mount

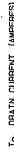
Typical SPICE Computer Model Parameters (For More Information See Application Note AN-975)

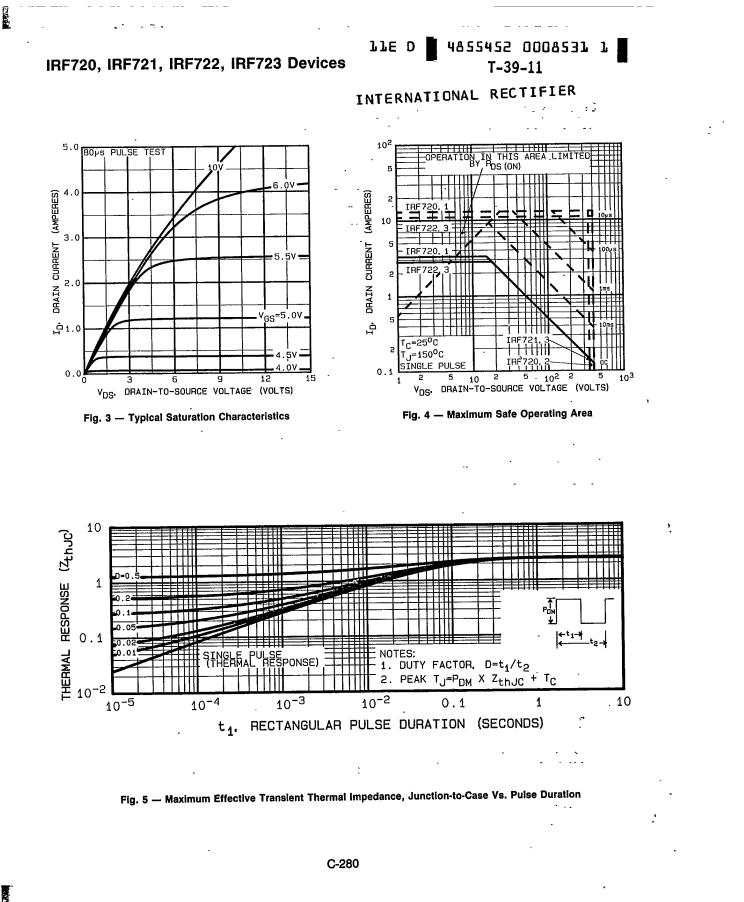
Device	Level, SPICE MOSFET Model	W (m), Channel Width	L (µm), Channel Length	Theta (1/V), Mobility Modulation	UO (CM ² /V-S), Surface Mobility	VTO (V), Threshold Voltage	R1 (0), Drain Resistance	R2 (0), Source Resistance	RG (D), Gate Resistance
ALL	3	0.279	1.2	0.30	450	4.00	1.4	0.02	1.5


CGSO (pf), Gate- Source Capacitance	CGD (F) Gate- Drain Capacitance	E1 (V), Voltage Dependent Voltage Source	LD (nH), Drain Inductance	LS (nH), Source Inductance	LG (nH), Gate Inductance	IS (A), Diode Saturation Current	RS (Ω), Diode Bulk Resistance
770	C6	2 + 0.995 VDG	4.5	7.5	7.5	3.6 x 10 ⁻¹³	0.026


 $C6 = 1500 \text{ pf} + 1.8 \times 10^{-22} (V_{\text{GE}})^{48}$

- Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 5) Refer to current HEXFET reliability report Ð @ $V_{DD} = 50V$, Starting T_J = 25°C, L = 31 mH,RG = 250, Peak I_L = 3.3A.
- $\begin{array}{ll} I_{SD} \leq 3.3 \text{A}, \, \text{di/dt} \leq 65 \text{A}/\mu\text{s}, \\ V_{DD} \leq \text{B} V_{DSS}, \ \ \text{T}_J \leq 150^\circ\text{C} \\ \text{Suggested} \ \text{R}_G \, = \, 18 \Omega \end{array}$ 0


Pulse width ≤ 300 µs; Duty Cycle ≤ 2%



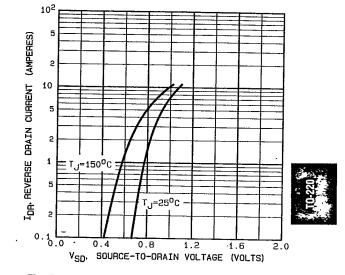
Ø

ļ

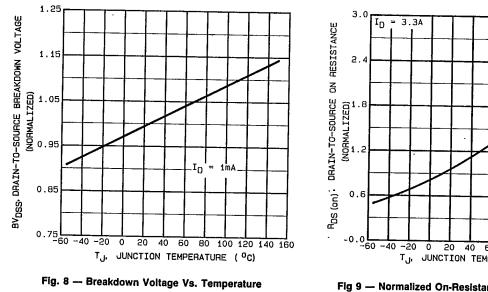
bownloaded from Elcodis.com electronic components distributor

-

IRF720, IRF721, IRF722, IRF723 Devices


INTERNATIONAL RECTIFIER

T-39-11


į.

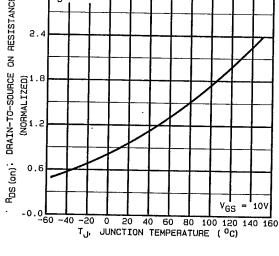
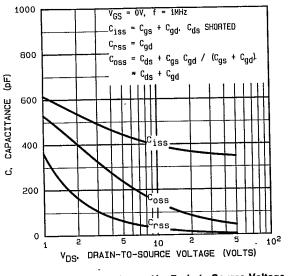


Fig. 6 — Typical Transconductance Vs. Drain Current



11E D 📕 4855452 0008533 S

T-39-11

۲

٦

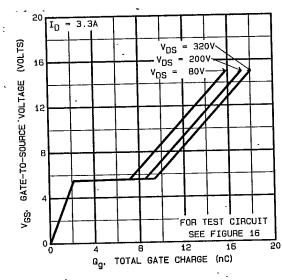


Fig. 10 — Typical Capacitance Vs. Drain-to-Source Voltage

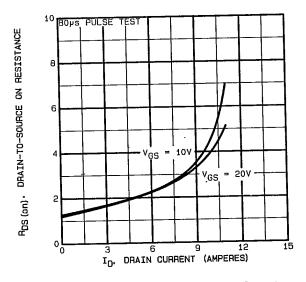


Fig. 12 --- Typical On-Resistance Vs. Drain Current

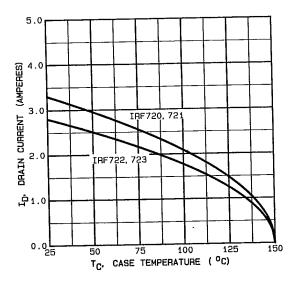


Fig. 13 — Maximum Drain Current Vs. Case Temperature

LLE D 4855452 0008534 7 INTERNATIONAL RECTIFIER

~~ ~ ~

er 18 in 766 e

IRF720, IRF721, IRF722, IRF723 Devices

 $V_{GS} = 10V + \frac{10}{10} + \frac$

Fig. 14a — Unclamped Inductive Test Circuit

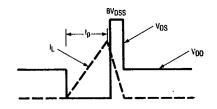


Fig. 14b — Unclamped Inductive Waveforms

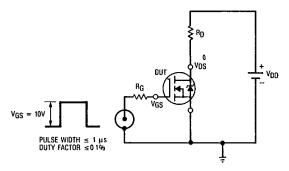


Fig. 15a — Switching Time Test Circuit

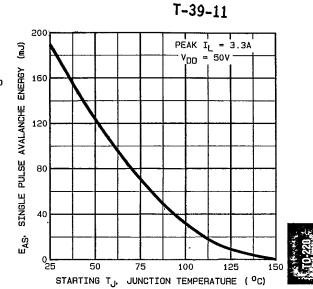
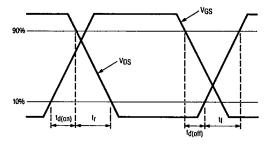



Fig. 14c — Maximum Avalanche Energy Vs. Starting Junction Temperature

. .

Fig. 15b — Switching Time Waveforms

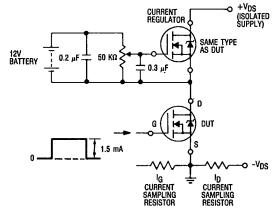


Fig. 16b — Gate Charge Test Circuit

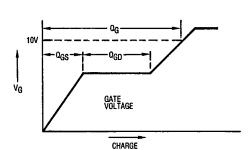


Fig. 16a — Basic Gate Charge Waveform

11E D 📕 4855452 0008535 9

IRF720, IRF721, IRF722, IRF723 Devices

INTERNATIONAL RECTIFIER

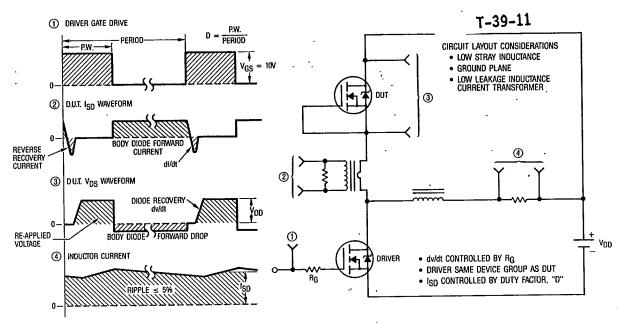
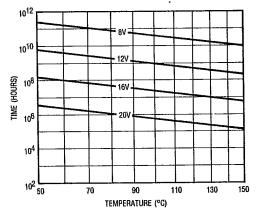
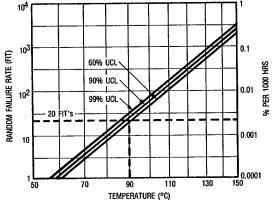




Fig. 17 - Peak Diode Recovery dv/dt Test Circuit

*Fig. 18 — Typical Time to Accumulated 1% Gate Failure

*The data shown is correct as of April 15, 1987. This information is updated on a quarterly basis; for the latest reliability data, please contact your local IR field office.

