CXA3202N

TX Gain Control Amplifier

For the availability of this product, please contact the sales office.

Description

CXA3202N is a TX gain control amplifier suitable for CDMA cellular/PCS phone.

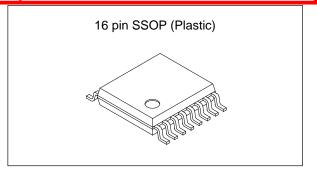
Features

- Wide gain control range
- Linear gain slope
- Wideband operation (50MHz to 300MHz)
- Very small package (16 Pin SSOP)
- Low voltage operation
- High output IP3
- · Power save function included

Absolute Maximum Ratings

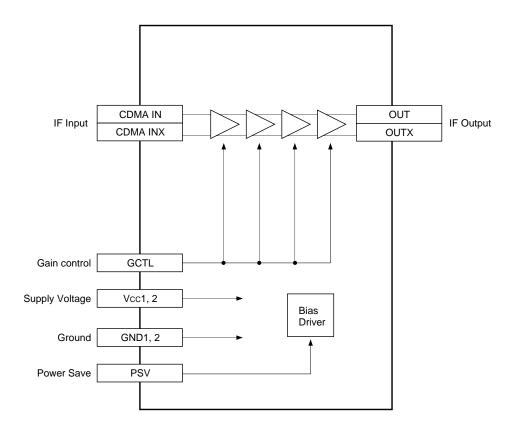
Vcc	6	V
Topr	-55 to +125	℃
Tstg	-65 to +150	℃
PD	330	mW
	-0.3 to 6	V
-(0.3 to Vcc + 0).3 V
-(0.3 to Vcc + 0).3 V
	0 to 2.5	V
	Topr Tstg PD	Topr -55 to +125 Tstg -65 to +150 PD 330 -0.3 to 6 -0.3 to Vcc + 0 -0.3 to Vcc + 0

Operating Condition

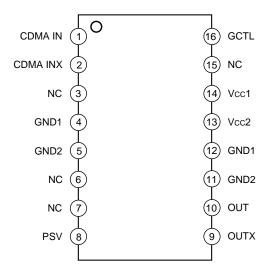

Supply voltage Vcc 2.7 to 3.8 V

Applications

CDMA cellular/PCS phone


Structure

Bipolar silicon monolithic IC



Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Configuration

Pin Description

Pin No.	Symbol	Pin voltage TYP (V)	Equivalent circuit	Description
1	CDMA IN	1.1	₹40k	Differential input pins for CDMA
2	CDMA INX	1.1	(1) (2) GND	transmit IF signal.
3 6 7 15	NC			No connection.
4 12	GND1	0		Ground
5 11	GND2	0		Ground
8	PSV		8 Vcc1 GND	Power save function pin. High: Active Low: Power save
9	OUTX	_	9 (0) 510 510 Vcc2	Differential output pins for transmit IF signal.
10	OUT	_	GND	Open collector output.
13	Vcc2	3.0		Positive power supply for output stage.
14	Vcc1	3.0		Positive power supply.

CXA3202N

Pin No.	Symbol	Pin voltage TYP (V)	Equivalent circuit	Description
16	GCTL		8k	Gain control pin.

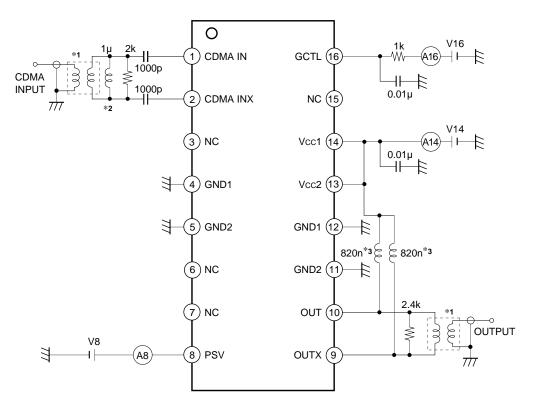
Electrical Characteristics

DC Characteristics

 $(Vcc = 3.0V, Ta = 27^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Current consumption 1	lcc1	Vpsv = 3.0V, Vgctl = 1.5V, Pin 13, 14	10	15.7	21.5	mA
Current consumption 2	lcc2	Vpsv = 0 V, Vgctl = 1.5V, Pin 13, 14	5	18	40	
Input current pin 8H	IpsvH	Vpsv = 3.0V			1	
Input current pin 8L	lpsvL	Vpsv = 0 V	-15			μA
Input current pin 16H	IgctlH	Vgctl = 3.0V			1	
Input current pin 16L	IgctlL	Vgctl = 0.5V	-1			
PSV high voltage	VpsH	Pin 8	2.5			V
PSV low voltage	VpsL	Pin 8			0.5	V

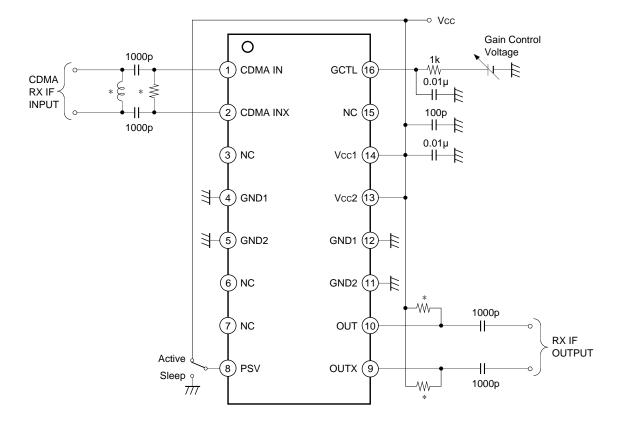
AC Characteristics


 $(Vcc = 3.0V, Ta = 27^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating frequency range	Fr		50		300	MHz
Gain 2.3	G2.3	f = 130.38MHz, level = -22.5dBm, Vgctl = 2.3V	13	17	21	
Gain 1.5	G1.5	Vgctl = 1.5V	-28	-24	-20	dB
Gain 1.0	G1.0	Vgctl = 1.0V	-58	-54	-50	
Gain 0.7	G0.7	Vgctl = 0.7V	-75	-70	-65	
CDMA Gain slope	GCLIN	Gain at Vgctl = 2.0V – Gain at Vgctl = 1.0V	56	59	62	dB/V
Input level 3rd order intercept point	IIP3	G = 15dB*1 f1= 129.38MHz, f2 = 131.38MHz Measure of 130.38MHz	-8.5	-4.5		dBm
Noise Figure	NF	G = 15dB*1 Measure of 130.38MHz		28	32	dB

^{*1} Adjust GCTL voltage, and set the overall gain to 15dB.

Measurement Circuit


^{*1} TOKO, Inc. B5FL 616DS-1135

^{*2} Coilcraft, Inc. 1008HS-102TKBC

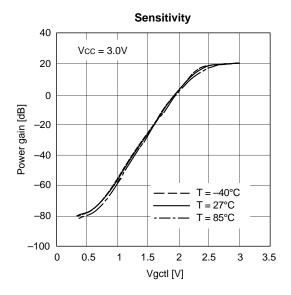
^{*3} Coilcraft, Inc. 1008HS-821TKBC

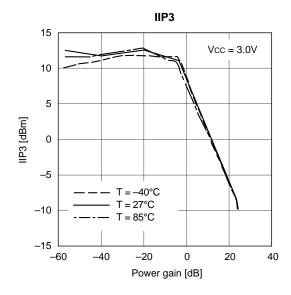
Application Circuit

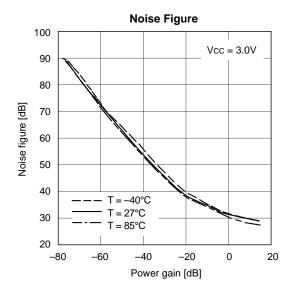
^{*} Must be adjusting values to result a best impedance matching between BPF filter and this IC.

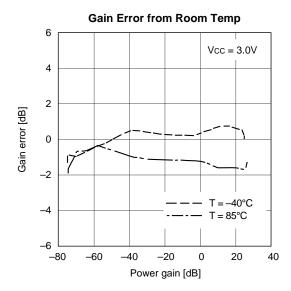
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Design Reference Values

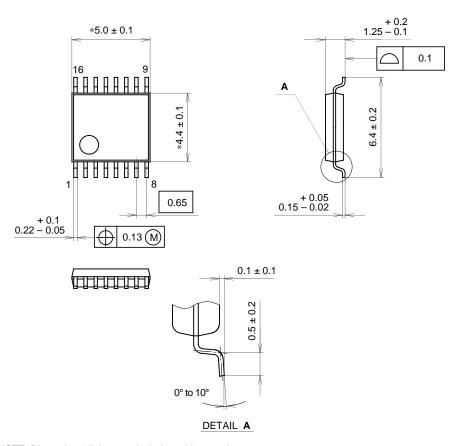

Single ended measurement


 $(Vcc = 3.0V, Ta = 27^{\circ}C)$


Item	Symbol	Conditions	Тур.	Unit
Input resistance	Rin		10	kΩ
Input capacitance	Cin	f = 130.38MHz, Vgctl = 1.5V		pF
Output resistance	Rout	1 = 130.36(v)(12, vgct) = 1.3v	6.0	kΩ
Output capacitance	Cout		0.92	pF


Notes on Operation

- 1) This IC is a wideband amplifier with wide gain control range. The decouping capacitors between GND Pin and Vcc Pin should be as close to the IC as possible.
- 2) The resistors connected to Pins 9 and 10 should be as close to the IC as possible.
- 3) This IC assumes the excellent characteristics when the differential input impedance between Pins 1 and 2 is 500Ω . Refer to the Measurement Circuit for the external element settings, etc.
- 4) Pay attention to handling this IC because its electrostatic discharge strength is weak.



Package Outline Unit: mm

16PIN SSOP (PLASTIC)

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

SONY CODE	SSOP-16P-L01
EIAJ CODE	SSOP016-P-0044
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.1g

NOTE: PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).