SONY

CXA3201AN

RX Gain Control Amplifier

Description

CXA3201AN is an RX gain control amplifier suitable for CDMA cellular/PCS phone.

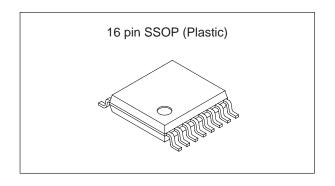
Features

- · Wide gain control range
- Linear gain slope
- Wideband operation (50MHz to 300MHz)
- Very small package (16 Pin SSOP)
- · Low voltage operation
- Two input ports
- Power save function included

Absolute Maximum Ratings

 Supply voltage 	Vcc	6	V
 Operating temperature 	Topr	-55 to +125	°C
 Storage temperature 	Tstg	-65 to +150	°C
• Allowable Power dissipation	PD	330	mW
 Supply voltage range 		-0.3 to 6	V
 Logic input voltage 	_	0.3 to Vcc + 0).3 V
 Signal input voltage 	_	0.3 to Vcc + 0).3 V
• Differential signal input voltage)	0 to 2.5	V

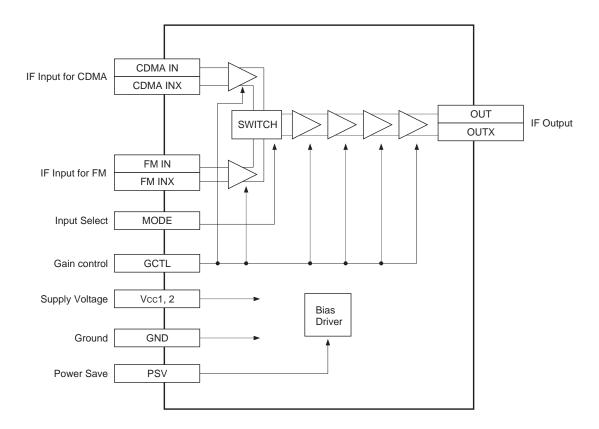
Operating Condition

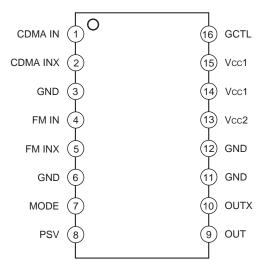

Supply voltage Vcc 2.7 to 3.8 V

Applications

CDMA cellular/PCS phone

Structure


Bipolar silicon monolithic IC


Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Configuration

Pin Description

Pin No.	Symbol	Pin voltage TYP (V)	Equivalent circuit	Description	
1	CDMA IN	1.15	Vcc1 2k ₹ 2k	Differential input pins for received	
2	CDMA INX	1.15	2 GND	CDMA IF signal.	
3 6 11 12	GND	0		Ground.	
4	FM IN	1.15	Vcc1 2k ≥ 2k	Differential input pins for received	
5	FM INX	1.15	5 GND	FM IF signal.	
7	MODE	_	7 WCC1 GND	Input select pin. CDMA IN for High FM IN for Low.	
8	PSV	_	8 Vcc1 GND	Power save function pin. High: Active Low: Power save	

Pin No.	Symbol	Pin voltage TYP (V)	Equivalent circuit Description	
9	OUT	_	460 \$ 460 9 W 12.3k 12.3k	Differential output pins for received CDMA IF signal.
10	OUTX	_	GND	Open collector output.
13	Vcc2	3.0		Positive power supply for output stage.
14 15	Vcc1	3.0		Positive power supply.
16	GCTL		200 Vcc1 8k 8k 8k 6k 6k 6ND	Gain control pin.

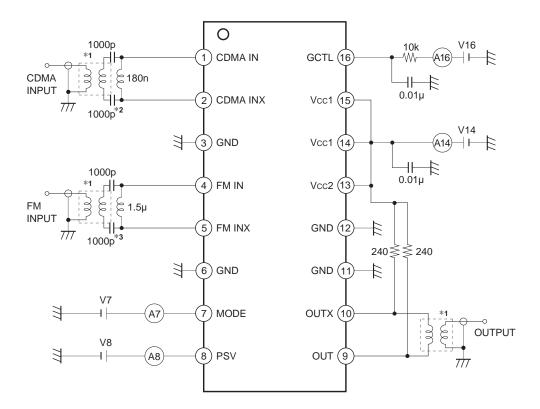
Electrical Characteristics

DC Characteristics

 $(Vcc = 3.0V, Ta = 27^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Current consumption 1	lcc1	Vpsv = 3.0V, Vgctl = 1.5V, Pin 13, 14	7	10.2	15	mA
Current consumption 2	lcc2	Vpsv = 0 V, Vgctl = 1.5V, Pin 13, 14	10	27	50	
Input current pin 7H	ImodeH	Vmode = 3.0V			1	
Input current pin 7L	ImodeL	Vmode = 0.5V	-1			
Input current pin 8H	IpsvH	Vpsv = 3.0V			1	μΑ
Input current pin 8L	lpsvL	Vpsv = 0 V	-15			
Input current pin 16H	IgctlH	Vgctl = 3.0V			1	
Input current pin 16L	IgctlL	Vgctl = 0.5V	-1			
MODE high voltage	VmH	Pin 7	2.5			
MODE low voltage	VmL	Pin 7			0.5	v
PSV high voltage	VpsH	Pin 8	2.5			V
PSV low voltage	VpsL	Pin 8			0.5	

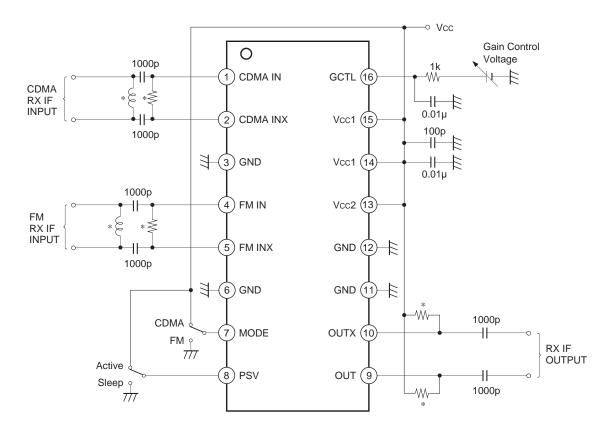
AC Characteristics


 $(Vcc = 3.0V, Ta = 27^{\circ}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating frequency range	Fr		50		300	MHz
Gain CDMA2.4	Gсрма2.4	Vmode = "H", f = 210.38MHz, Vgctl = 2.4V	42	46	50	
Gain CDMA1.5	Gсрма1.5	Vmode = "H", Vgctl = 1.5V	-7	-3	1	dB
Gain CDMA0.6	Gсрма0.6	Vmode = "H", Vgctl = 0.6V	-59	-55	-51	
CDMA Gain slope	GCLIN	Vmode = "H", Gain CDMA at Vgctl = 2.0V - Gain CDMA at Vgctl = 1.0V	58	61	64	dB/V
Gain FM2.4	Gгм2.4	Vmode = "L", f = 85.38MHz, Vgctl = 2.4V	42	46	50	
Gain FM1.5	Gғм1.5	Vmode = "L", Vgctl = 1.5V	-7	-3	1	dB
Gain FM0.6	G Fм0.6	Vmode = "L", Vgctl = 0.6V	-59	-55	-51	
FM Gain slope	GFMLIN	Vmode = "L", Gain FM at Vgctl = 2.0V - Gain FM at Vgctl = 1.0V	58	61	64	dB/V
Input level 3rd order intercept point	IIP3	Vmode = "H", Gcdma = 40dB*1 f1 = 209.38MHz, f2 = 211.38MHz Measure of 210.38MHz	-42	-38		dBm
Noise Figure	NF	Vmode = "H", Gcdma = 40dB*1 Measure of 210.38MHz		5	8	dB

^{*1} Adjust GCTL voltage, and set the overall gain to 40dB.

Measurement Circuit


^{*1} TOKO, Inc. B5FL 616DS-1135

^{*2} Coilcraft, Inc. 0805HS-181TKBC

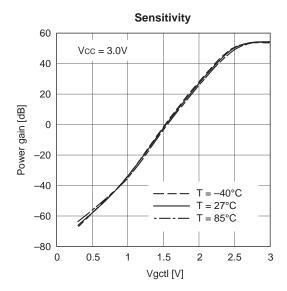
^{*3} Coilcraft, Inc. 1008CS-152XKBC

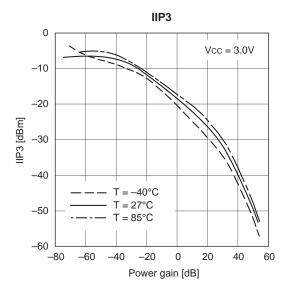
Application Circuit

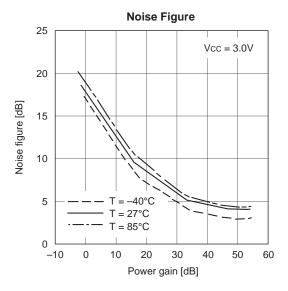
^{*} Must be adjusting values to result a best impedance matching between BPF filter and this IC.

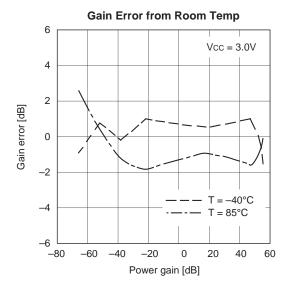
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Design Reference Values

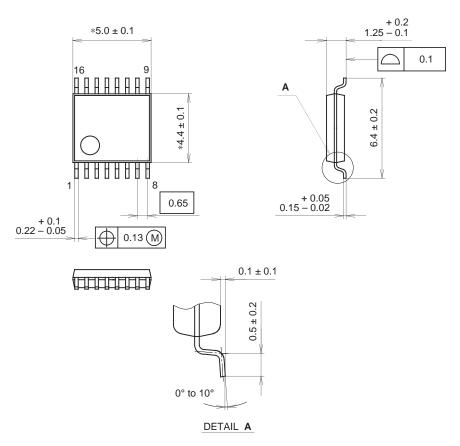

Single ended measurement


 $(Vcc = 3.0V, Ta = 27^{\circ}C)$


Item	Symbol	Conditions	Тур.	Unit
Input resistance	Rin		1.6	kΩ
Input capacitance	Cin	f = 210.38MHz, Vgctl = 1.5V		pF
Output resistance	Rout	1 = 210.36(vii 12, vgcti = 1.3v	5.9	kΩ
Output capacitance	Cout		0.85	pF


Notes on Operation

- 1) This IC is a wideband amplifier with wide gain control range. The decouping capacitors between GND Pin and Vcc Pin should be as close to the IC as possible.
- 2) The resistors connected to Pins 9 and 10 should be as close to the IC as possible.
- 3) This IC assumes the excellent characteristics when the differential input impedance between Pins 1 and 2, Pins 4 and 5 is 500Ω . Refer to the Measurement Circuit for the external element settings, etc.
- 4) Pay attention to handling this IC because its electrostatic discharge strength is weak.



Package Outline Unit: mm

16PIN SSOP (PLASTIC)

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

SONY CODE	SSOP-16P-L01
EIAJ CODE	SSOP016-P-0044
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.1g

NOTE: PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).