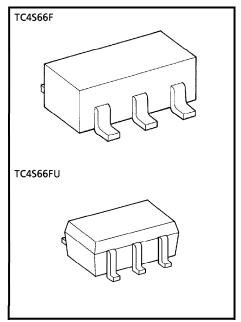
TOSHIBA TC4S66F/FU

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4S66F, TC4S66FU

BILATERAL SWITCH

TC4S66F/FU contains one circuit of bidirectional switches. When control input, CONT is set to "H" level, the impedance between input and output of the switch becomes low and when it is set to "L" level, the switch becomes high. This can be applied for switching of analog signals and digital signals.


FEATURES

ON-resistance (R_{ON})

300 Ω (Typ.) $V_{DD} - V_{SS} = 5 V$ 110 Ω (Typ.) $V_{DD} - V_{SS} = 10 \text{ V}$ 70 Ω (Typ.) $V_{DD} - V_{SS} = 15 V$

OFF-resistance (ROFF)

 R_{OFF} (Typ.) > $10^9 \Omega$

Weight SSOP5-P-0.95 : 0.016 g (Typ.) SSOP5-P-0.65A : 0.006 g (Typ.)

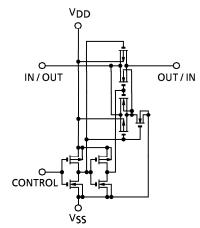
MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT	
DC Supply Voltage	V_{DD}	Vss - 0.5~Vss + 20	V	
Control Input Voltage	V _{C IN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧	
Switch I/O Voltage	V _{I/O}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	V	
Power Dissipation	PD	200	mW	
Potential difference across	V: Va	± 0.5	>	
I/O during ON	V _I -V _O	±0.5		
Control Input Current	IC IN	± 10	mA	
Operating Temperature	т	<i>-</i> 40∼85	°C	
Range	T _{opr}	- 40**85		
Storage Temperature	T _{stg}	-65~150	°C	
Lead Temperature (10 s)	TL	260	°C	

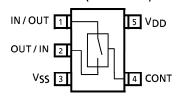
TRUTH TABLE

CONTROL	IMPEDANCE BETWEEN IN/OUT-OUT/IN *
Н	$0.5\sim5\times10^{2}\Omega$
L	> 10 ⁹ Ω

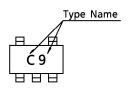
* : See static electrical characteristics.


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.


The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.


CIRCUIT DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

MARKING

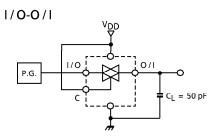
RECOMMENDED OPERATING CONDITIONS $(V_{SS} = 0 V)$

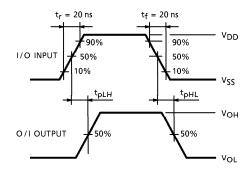
CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}	_	3	_	18	V
Input/Output Voltage	V _{IN} /V _{OUT}		0	_	V_{DD}	V

STATIC ELECTRICAL CHARACTERISTICS (In case not specifically appointed, $V_{SS} = 0 \text{ V}$)

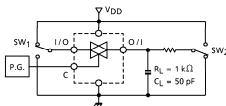
CHARACTERISTIC		SYM-	TEST CONDITION	V_{DD}	– 40°C		25°C			85	UNIT	
CHARAC	TEMBLE	BOL	TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	OIVII
Control In	nu+ ⊔iah			5	3.5	_	3.5	2.75	_	3.5	_	
Control In Voltage	iput nigii	v_{IH}	$ I_{IS} = 10 \mu A$	10	7.0	_	7.0	5.50	_	7.0	—	
vortage				15	11.0	_	11.0	8.25	_	11.0	_	V
Control In	nut Low			5	—	1.5	_	2.25	1.5	_	1.5	ľ
Voltage	put Low	V_{IL}	$ I_{IS} = 10 \mu A$	10	 	3.0	_	4.5	3.0	_	3.0	
Voltage				15	_	4.0	_	6.75	4.0	_	4.0	
			$0 \le V_{IS} \le V_{DD}$	5	—	800	_	290			1200	
On-State I	Resistance	RON	$R_L = 10 \text{ k}\Omega$	10	—	210	_	120	250	_	300	Ω
				15	_	140	_	85	160	_	200	
Input/Output Leakage Current			V _{IN} = 18 V V _{OUT} = 0 V	18	_	± 100	_	± 0.1	± 100	_	± 1000	
		lOFF	V _{IN} = 0 V V _{OUT} = 18 V	18	_	± 100	1	± 0.1	± 100	ı	± 1000	nA
Quiescent	Quiescent Device			5	_	0.25	_	0.001	0.25		7.5	
Current		$ I_{DD} V_{IN} = V_{DD}, V_{SS}$	10	_	0.5	_	0.001	0.5	_	15	μ A	
				15	_	1.0	_	0.002	1.0	_	30	
Input	H Level	ΊΗ	V _{IH} = 18 V	18	_	0.1		10 ^{- 5}	0.1		1.0	
Current	L Level	loL	V _{IL} = 0 V	18	_	- 0.1	_	- 10 ^{- 5}	- 0.1	_	- 1.0	μΑ

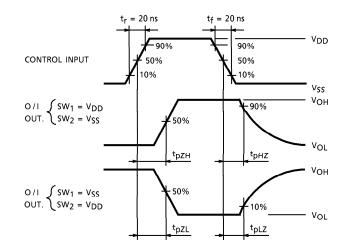
DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C)

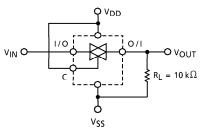

CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{SS} (V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time (IN-OUT)	t _{pLH} t _{pHL}	C _L = 50 pF	0 0 0	5 10 15	_ _ _	15 8 5	40 20 15	
Propagation Delay Time (CONTROL-OUT)	t _{pZL} t _{pZH}	$R_{L} = 1 k\Omega$ $C_{L} = 50 pF$	0 0 0	5 10 15	_ _ _	55 25 20	120 40 30	ns
Propagation Delay Time (CONTROL-OUT)	t _{pLZ} t _{pHZ}	$R_{L} = 1 k\Omega$ $C_{L} = 50 pF$	0 0 0	5 10 15	_ _ _	45 30 25	80 70 60	
Max. Control Input Repetition Rate	fMAX (C)	$R_{L} = 1 k\Omega$ $C_{L} = 50 pF$	0 0 0	5 10 15	_ _ _	10 12 12		MHz
– 3dB Cut Off Frequency	f _{MAX} (I-O)	$R_{L} = 1 k\Omega$ $C_{L} = 50 pF (*1)$	- 5	5	_	30	_	
Total Harmonic Distortion	_	$R_{L} = 10 \text{ k}\Omega$ $f = 1 \text{ kHz} \qquad (*2)$	- 5	5	_	0.03	-	%
– 50dB Feedthrough Frequency	_	$R_L = 1 k\Omega$ (*3)	- 5	5	_	600	_	kHz
Crosstalk (CONTROL-OUT)	_	$R_{\text{IN}} = 1 \text{ k}\Omega$ $R_{\text{OUT}} = 10 \text{ k}\Omega$ $C_{\text{L}} = 15 \text{ pF}$	0 0 0	5 10 15	_ _ _	200 400 600	_ _ _	mV
Input Capacitance	C _{IN}	Control Input Switch I/O			_	5 10	7.5 —	pF
Feedthrough Capacitance	C _{IN-OUT}	_			_	0.5	_	þΓ


^{*1 :} The frequency at $20\ell og_{10} \frac{V_{OS}}{V_{IS}} = -3 \, dB$ shall be $f_{MAX}(I/O)$ using sine wave of $\pm 2.5 \, V_{p-p}$ for V_{IS} .

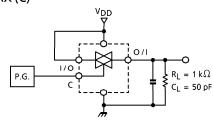
*2 : V_{IS} shall be sine wave of $\pm 2.5 \, V$.

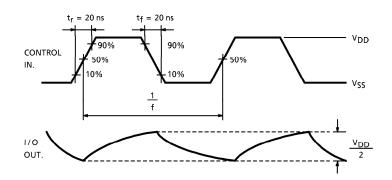

^{*3 :} The frequency at $20\ell og_{10} \frac{V_{OS}}{V_{IS}} = 50 \, dB$ shall be the feed through using of $\pm 2.5 \, V_{p-p}$.

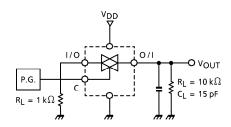

1. t_{pLH}, t_{pHL}

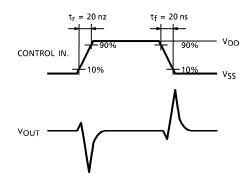


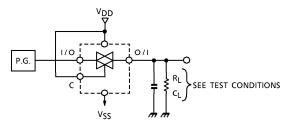
2. t_{pZL}, t_{pZH}, t_{pLZ}, t_{pHZ}
CONTROL-O/I

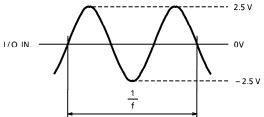


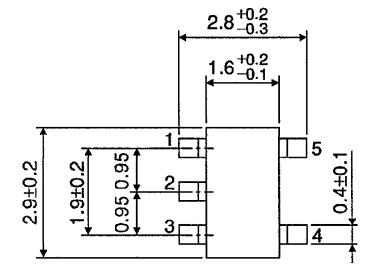

3. R_{ON}

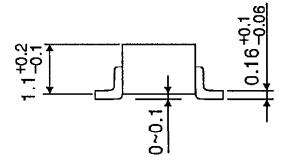

$$\mathsf{R}_{\mathsf{ON}} = 10 \times \frac{(\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}})}{\mathsf{V}_{\mathsf{OUT}}} (\mathsf{k}\Omega)$$


4. fMAX (C)



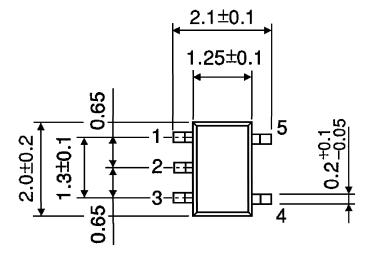

5. CROSSTALK (CONTROL INPUT)

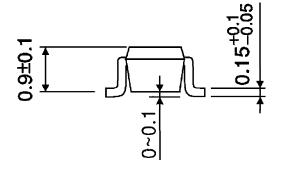

6. TOTAL HARMONIC DISTORTION, $f_{\mbox{MAX}}$ (I/O-O/I), FEEDTHROUGH (SWITCH OFF)



PACKAGE DIMENSIONS SSOP5-P-0.95

Unit: mm





Weight: 0.016 g (Typ.)

PACKAGE DIMENSIONS SSOP5-P-0.65A

Unit: mm

Weight: 0.006 g (Typ.)