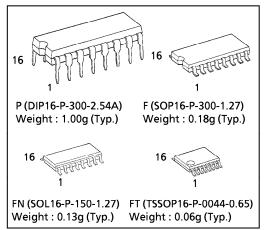
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4051BP, TC4051BF, TC4051BFN, TC4051BFT TC4052BP, TC4052BF, TC4052BFN, TC4052BFT TC4053BP, TC4053BF, TC4053BFN, TC4053BFT

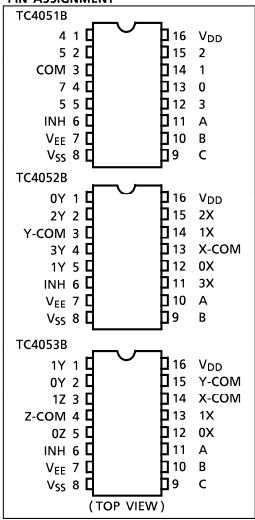
TC4051B SINGLE 8 – CHANNEL MULTIPLEXER / DEMULTIPLEXER TC4052B DIFFERENTIAL 4 - CHANNEL MULTIPLEXER / DEMULTIPLEXER

TC4053B TRIPLE 2 - CHANNEL MULTIPLEXER / DEMULTIPLEXER

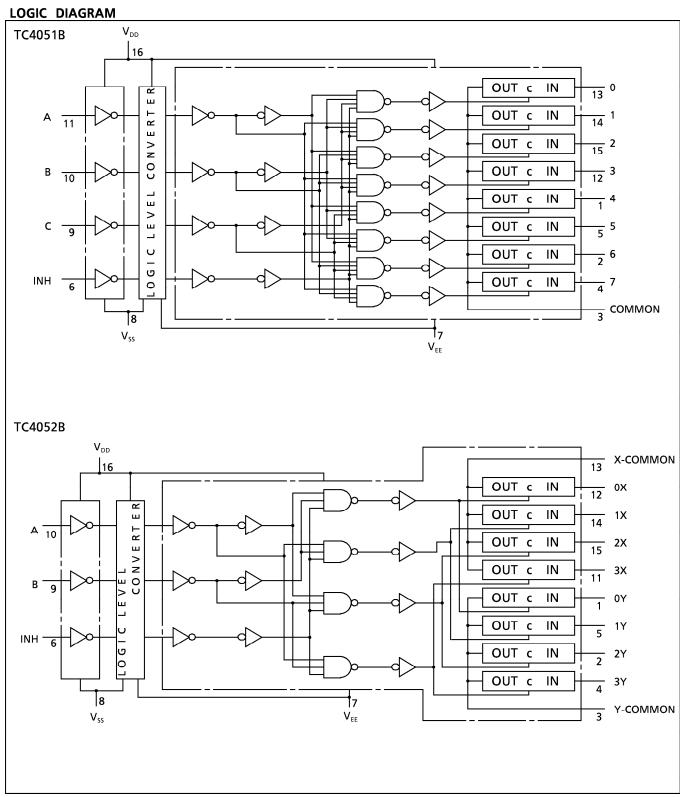
TC4051B, TC4052B and TC4053B are multiplexers with capabilities of selection and mixture of analog signal and digital signal. TC4051B has 8 channels configuration. TC4052B has 4 channel×2 configuration and TC4053B has 2 channel×3 configuration. The digital signal to the control terminal turns "ON" the corresponding switch of each channel, with large amplitude (VDD-VEE) can be switched by the control signal with small logical amplitude (VDD-VSS). For example, in the case of $V_{DD}=5V$ $V_{SS}=0V$ and $V_{EE}=-5V$, signals between -5V and +5V can be switched from the logical circuit with single power supply of 5 volts. As the ONresistance of each switch is low, these can be connected to the circuits with low input impedance.


MAXIMUM RATINGS

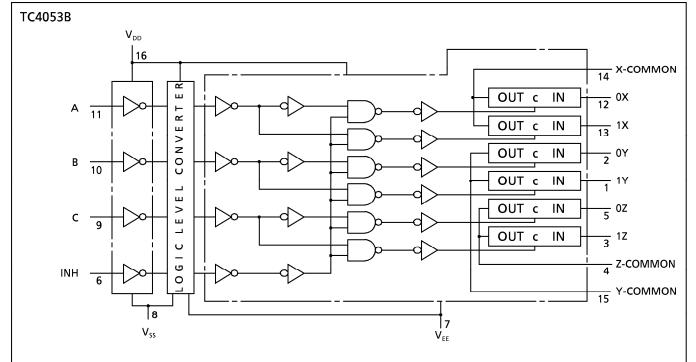
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V _{DD} - V _{SS}	-0.5~20	٧
DC Supply Voltage	V _{DD} - V _{EE}	-0.5~20	٧
Control Input Voltage	V _{CIN}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
Switch I/O Voltage	V _I /V _O	$V_{EE} - 0.5 \sim V_{DD} + 0.5$	٧
Control Input Current	I _{CIN}	± 10	mA
Potential difference across I/O during ON	V _I - V _O	-0.5~0.5	٧
Power Dissipation	P _D	300 (DIP) / 180 (SOIC)	mW
Operating Temperature Range	T _{opr}	-40~85	°C
Storage Temperature Range	T _{stg}	- 65∼150	°C


TRUTH TABLE

CON	TROL I	NPUTS		"ON" CHANNEL					
INHIBIT	c∆	В	Α	TC4051B	TC4052B	TC4053B			
L	L	L	L	0 0X, 0Y (0X, 0Y, 0Z			
L	L	L	Н	1	1X, 1Y	1X, 0Y, 0Z			
L	L	Н	L	2	2X, 2Y	0X, 1Y, 0Z			
L	L	Н	Н	3	3X, 3Y	1X, 1Y, 0Z			
L	Н	L	L	4	_	0X, 0Y, 1Z			
L	Н	L	Н	5	_	1X, 0Y, 1Z			
L	Н	Н	L	6 –		0X, 1Y, 1Z			
L	Н	Н	Н	7 –		1X, 1Y, 1Z			
Н	*	*	*	NONE	NONE				
*: Don't Care \triangle Except TC4052B									


(Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT


TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

LOGIC DIAGRAM

TRUTH TABLE

CONTROL	Impedance Between
C	IN-OUT*
H	$0.5 \sim 5 \times 10^{2} \Omega$
L	> $10^{9} \Omega$

^{*} See Electrical Characteristics

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
DC Supply Voltage	V_{DD} - V_{SS}		3	_	18	v	
	V _{DD} -V _{EE}		3	— 18		V	
Control Input Voltage	V _{IN}		V _{SS}	_	V _{DD}	V	
Input/Output Voltage	V _{IN} /V _{OUT}		V _{EE}	_	V _{DD}	V	

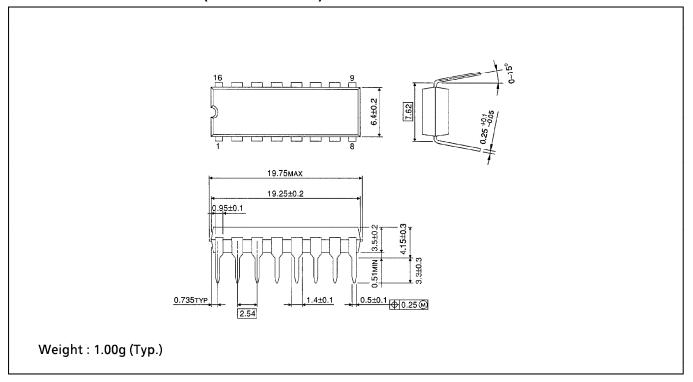
STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYM-	TEST CONDI-	V _{ss}	1/	W	- 4	l0°C		25°C		85	5°C	UNIT
CHARACTERISTIC	BOL	TION	(V)	V _{EE} (V)	V _{DD} (V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Control Input High Voltage	V _{IH}	$V_{IS} = V_{DD}$	V _{EE} = R _L = 1 to V∢	lk Ω	5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25	_ 	3.5 7.0 11.0		
Control Input Low Voltage	VIL	thru 1kΩ	1	μA I OFF	5 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V
On-State Resistance	R _{ON}	$0 \le V_{IS} \le V_{DD}$ $R_{L} = 10k\Omega$		0 0 0	5 10 15	_ _ _	850 210 140	_ 	240 110 80	950 250 160	<u>-</u> -	1200 300 200	Ω
△On-State Resistance Between Any 2 Switches	R_{ON}		0 0 0	0 0 0	5 10 15		_ _ _		10 6 4		_ _ _	_ _ _	
Input/Output Leakage Current	I _{OFF}	$V_{IN} = 18V, V_{OUT} = 0V$ $V_{IN} = 0V, V_{OUT} = 18V$		18 18	1 1	± 100 ± 100	1 1	± 0.01 ± 0.01	± 100 ± 100		± 1000 ± 1000	nA	
Quiescent Supply Current	I _{DD}	$V_{IN} = V_{SS}$,	V _{DD} *	:	5 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μΑ
Input Current	I _{IN}	V _{IH} = 18V V _{IL} = 0V	V _{IH} = 18V V _{IL} = 0V		18 18		0.1 -0.1		10 ⁻⁵ - 10 ⁻⁵	0.1 -0.1	_	1.0 - 1.0	
Input Capacitance	CIN					l	_	l	5	7.5	_	_	
Switch Input Capacitance	CIN						_		10		_	_	
Output Capacitance	C _{OUT}	TC4051E TC4052E TC4053E	3		10 10 10		_ _ _		58 30 17		_ _ _	_ _ _	pF
Feedthrough Capacitance	C _{IN-} C _{-OUT}	TC4051E TC4052E TC4053E	3		10 10 10				0.2 0.2 0.2		_ _ _	_ _ _	

^{*} All valid input combinations.

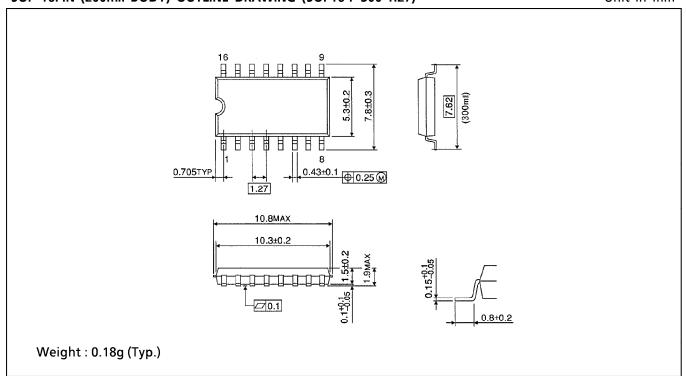
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{ss} (V)	V _{EE} (V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Phase Difference Beetween Input to Output	φ Ι - Ο		0 0 0	0 0 0	5 10 15		15 8 6	45 20 15	
Propagation Delay Time (A, B, C, - OUT)	t _{pZL} t _{pZH} t _{pLZ} t _{pHZ}	$R_L = 1k\Omega$	0 0 0 0	0 0 0 - 5 - 7.5	5 10 15 5 7.5	11111	170 90 70 100 80	550 240 160 240 160	
Propagation Delay Time (INH - OUT)	t _{pZL} t _{pZH}	$R_L = 1k\Omega$	0 0 0 0	0 0 0 - 5 - 7.5	5 10 15 5 7.5	11111	120 60 50 80 60	380 200 160 200 160	ns
Propagation Delay Time (INH - OUT)	t _{pLZ} t _{pHZ}	$R_L = 1k\Omega$	0 0 0 0	0 0 0 - 5 - 7.5	5 10 15 5 7.5	1111	170 90 70 100 80	450 210 160 210 160	
- 3dB Cutoff Frequency TC4051B TC4052B TC4053B	f _{MAX} (I - O)	$R_L = 1k\Omega$ (*1)	- 5 - 5 - 5	- 5 - 5 - 5	5 5 5		20 30 40	_ _ _	MHz
Total Harmonic Distortion	_	$R_L = 10k\Omega$ f = 1kHz (*2)	- 2.5 - 5 - 7.5	- 2.5 - 5 - 7.5	2.5 5 7.5		0.15 0.03 0.02		%
– 50dB Feedthrough (SWITCH OFF)	_	$R_L = 1k\Omega$ (*3)	- 5	- 5	5		500		kHz
Crosstalk	_	$R_L = 1k\Omega$ (*4)	- 5	- 5	5	_	1.5	_	MHz
Crosstalk (CONTROL - OUT)	_	$R_{\text{IN}} = 1k\Omega$ $R_{\text{OUT}} = 10k\Omega$ $C_{\text{L}} = 15\text{pF}$	0 0 0	0 0 0	5 10 15		200 400 600	_ _ _	mV

^{*1} Sine wave of $\pm 2.5 Vp$ -p shall be used for V_{is} and the frequency of 20 log 10 $\frac{V_{OS}}{V_{is}}$ = -3dB shall be f_{MAX} .

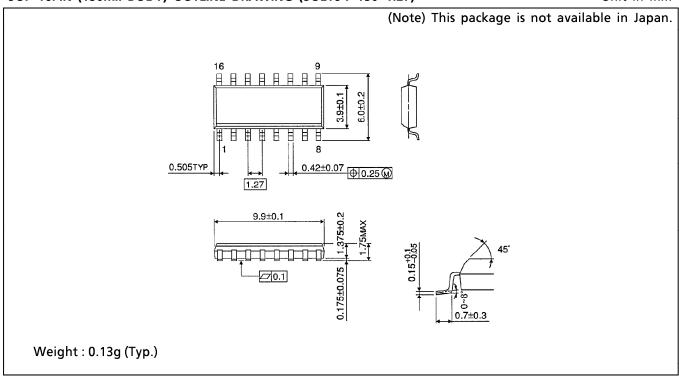

^{*2} $V_{\rm is}$ shall be sine wave of $\pm \left(\frac{V_{DD} - V_{EE}}{4}\right)$ p-p.

^{*3} Sine wave of $\pm 2.5 V$ p-p shall be used for V_{is} and the frequency of 20 log 10 $\frac{V_{OS}}{V_{is}} = -50 dB$ shall be feed-through.

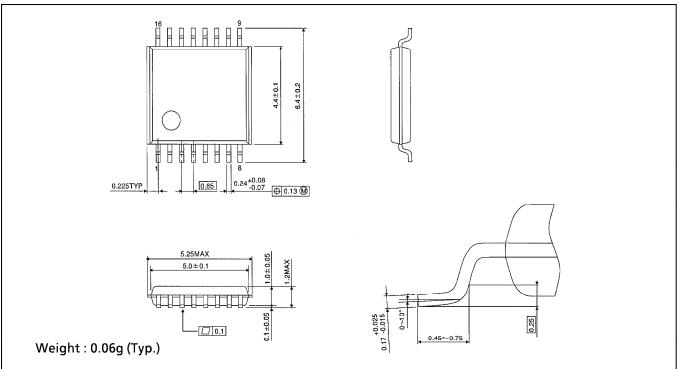
^{*4} Sine wave of $\pm 2.5 \text{Vp-p}$ shall be used for V_{is} and the frequency of 20 log 10 $\frac{V_{OS}}{V_{is}} = -50 \text{dB}$ shall be Crosstalk.


DIP 16PIN OUTLINE DRAWING (DIP16-P-300-2.54A)

Unit in mm


SOP 16PIN (200mil BODY) OUTLINE DRAWING (SOP16-P-300-1.27)

Unit in mm


SOP 16PIN (150mil BODY) OUTLINE DRAWING (SOL16-P-150 -1.27)

Unit in mm

TSSOP 16PIN OUTLINE DRAWING (TSSOP16-P-0044-0.65)

Unit in mm

