CX20099/CX20148

Noise Reduction

For the availability of this product, please contact the sales office.

Description

The CX20099/CX20148 is a bipolar IC designed for the 8 mm VTR PCM audio noise reduction system.

Application in the PCM audio recording and playback system makes it possible to obtain about a 100 dB dynamic range.

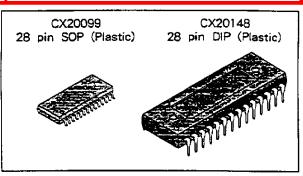
Features

- 5V single power supply operation
- Low power consumption (70 mW typical in operation)
- Logarithmic compress/expand compandor is provided. (Compress/Expand ratio: 2)
- REC/PB electronic switching (Compatible with TTL)
- Noise modulation reduction with the fixed preemphasis
- Improvement in low band distortion with the holding recovery characteristics
- Built-in two channels

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25° C)


 Power supply voltage 	Vcc	10	V
 Operating temperature 	Торг	-20 to +75	°C
Storage temperature	Tstg	-55 to +150	°C
Allowable power	PD	CX20099 800	mW

dissipation CX20148 1170 mW

Recommended Operating Condition


Vcc 4.2 to 6.0

V (5.0V typical)

SONY reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of SONY corporation or others.

Block Diagram

SONY

Pin Description

DC voltage (Ta=25°C, Vcc=5.0V, See Fig. 1.)

No.	Name	Function	DC voltage (V) (Typical)	Remark
1	GND2	Circuit GND for VREF ·V.G (median point)	0.0	
2	V.G1	V.G signal reference for 1ch	2.50	Maximum current $\simeq \pm 200 \mu A$ Output impedance $\simeq 260 \Omega$ typical
3	VIN1	REC/PB common input terminal for 1ch	2.50	Bias current == 150nA
4	RECFB1	MOA inverter phase input terminal In REC, PB output for 1ch is feedback	2.50	Bias current 🛥 150nA
5	RECOUT1	REC output for 1ch	2.50	Maximum output $\approx 2.8 \text{ Vp-p}$ (RL = 7K Ω) (2.1dBm)
6	VCAINT	VCA input terminal for 1 ch to input current with the same voltage as V.G.	2.50	Bias current = 100nA Max. current = 1.7mAp-p (lin + lout) (at Vcc = 5.0V)
7	VCAcomp1	1ch VCA phase compensation terminal	2.46	
8	VCAFB1	1 ch VCA output amp inverted phase input terminal to convert I to V	2.50	Bias current = 150nA
9	PBOUT1	1ch PB output terminal	2.50	Max. output \approx 3.0Vp-p (RL = 5k Ω) (3.7dBm)
10	IREF	Reference current input terminal for both ch detectors	0.91	
11	DETIN 1	1 ch detector input terminal to input current	1.36	
12	TC1	For smoothing the 1ch detector full-wave rectified waveform. It also determines the attack and recovery time constants.	2.15	
13	ТСН1	It determines the 1 ch detector hold time constant.	2.74	
14	GND1	Signal and control GND for both channels	0.0	
15	Vcc	Power supply terminal for both channels	5.0	
16	TCH2	It determines the 2ch detector hold time constant.	2.74	
17	TC2	For smoothing the 2ch detector full-wave rectified waveform. It also determines the attack and recovery time constants.	2.15	
18	DETIN2	2ch detector input terminal to input current	1.36	

-

No.	Name	Function	DC voltage (V) (Typical)	Remark		
19	REC/PB	REC/PB mode switching terminal	0.50	In REC, $0 \le VL \le 0.5V$ $IL = 50\mu A max.$ In PB, 2.5V $\le VH \le Vcc$ IH = 0		
20	PBOUT2	2ch PB output terminal	2.50	Max. output $\simeq 3.0$ Vp-p (RL = 5K Ω) (3.7dBm)		
21	VCAF82	2nd VCA output amp inverted phase input terminal to convert I to V.	2.50	Bias current 🛥 150nA		
22	VCACOMP2	2nd ch VCA phase compensation terminal	2.46			
23	VCAIN2	2ch VCA input terminal with the same voltage as V.G. to input current.	2.50	Bias current $\simeq 100$ nA. Max. current $\simeq 1.7$ mAp-p (lin + lout) (at Vcc = 5.0V)		
24	RECOUT2	2ch REC output terminal	2.50	Max. output == 2.8Vp-p (RL = 7K Ω) (2.1dBm)		
25	RECFB2	MOA inverter phase input terminal In REC, PB output for 1ch is feedback	2.50	Bias current 🛥 150nA		
26	VIN2	REC/PB common input terminal for 2ch	2.50	Bias current == 150nA		
27	Vref	Reference voltage for VCA gain	1.95	Max. current — 4mA typical Output impedance — 10 Ω typical		
28	V.G2	V.G signal reference for 2 ch	2.50	Max. current $\Rightarrow \pm 200 \mu A$ Output impedance $\Rightarrow 260 \Omega$ typical		

Electrical Characteristics

See the filter circuit of Electrical Characteristics Measuring Circuit

		Unit	Υm	>m	2	dBin	ullbu	ij	Elb i	Ę	Ę	, flb	=	Ę	E)	Ę	SIP
ں ۲	dard	Max.	18.0	330	000	-8.5	- 8.5	- 18.5	- 18.5	- 14.4	14,4	-8.5	- 8.5		-4,4	-3.2	-3.2
11 a = 25°C, VCC = 5V)	Standard	Typ.	14.0	0	0	- 10.0	- 10.0	- 20,0	-20.0	15.9	-15.9	-10.0	10.0	- 5.9	-5.9	1.1-	-4.7
II a		Min.	10.0	- 330	- 330	-11.5	- 11.5	-21.5	-21.5	- 17.4	- 17.4	- 11.5	- 11.5	-7.4	1.1-	-6.2	-6,2
	Description of output waveform and measuring method			Measure DC centering on 2.5 V			Measure the difference with the reference										
	Measuring	point	Vcc	P.B. OFFSET 1	P.D OPPSET 2	REC OUT 1	REC OUT 2	REC OUT 1	REC OUT 2	REC OUT 1	REC OUT 2	REC OUT 1	REC OUT 2	REC OUT 1	REC OUT 2	REC OUT 1	REC OUT 2
	Input condition	VIN (dl3m)	No signat	No signal	No signal	- 10		- 50		- 50		- 30		- 30		- 30	
	Input c	/ VIN (KIIz)	No	No	No	0.4	_	0.4		1.0		0.4		7.0		14.0	
Γ		SW6	990														
		SW5	340														
	ndition	5W4	OFF														
	SW • condition	sw3	SW3														
		SW2	930	lch	2ch	OFF											
		SWI	0FF	NO		9 P F											
	C.mhol	innuko	lcc	Vurr (1)	Vurr (2)	E – F – R(1)	E - F - R(2)	E - F - 1 (1)	E - F - 1 (2)	E - F - 2(1)	E - F - 2 (2)	E – F – 3(1)	E - F - 3(2)	E - F - 4(1)	E - F - 4 (2)	E - F - 5(1)	E – F – 5(2)
	Eel		Circuit current	Decoder offset voltage [1]	Decoder offset voltage (2)	Reference level (1)	Reference level (2)	Frequency response 1-(1)	Frequency response 1-(2)	Frequency response 2-(1)	Frequency response 2-{2}	Frequency response 3-{1}	Frequency response 3-(2)	Frequency response 4-(1)	Frequency response 4-(2)	Fraquency response 5-(1)	Frequency response 5-{2}
	Mea-	0 N	-	2	m	4	ى	Q	2	æ	5	10	=	12	:	Ξ	5

SONY

dBm dBm dBm dBm dBm dßm Ĩ đB ĘΡ % > > > 32 % % - 34.0 - 34.0 - 34.0 0 0.16-0 2.10 0.40 0,40 - 39.-2.8 5.6 5.6 2.8 11 Ξ Max - 39 Standard -40.0 - 40.0 - 45.0 ö 0 0 1.95 0.13 0.13 - 45.0 2.5 2.5 Ťγp. 0.20.2 - 40. Ţ 1 ę 1.80 2.2 2.2 2.6 Min. 2.6 Ł ţ. L I 1 1 L i. L E Description of output waveform -and measuring method ".A" curve Use filter (20 d8) Rg = 600 N VIN2 input VIN1 input Measure the difference with the reference level. Measure the distortion factor. Measure the distortion factor. C 20 Hz to 20 kHz Use fitter (20 dB) Rg = 600 f Use 1 kHz (20 dB) BPF Measuring point ~ **~**1 24 V.G2 VNE V.GI REC Filter OUT Filler OUT Filter Filter OUT Filter P.B. OUT Filter OUT REC OUT REC NEC OUT PB OUT -3.0 VIV (dBm) 2-- 10 2 nput condition No signal /VIN (KHz) 1.0 0.1 0.1 0.4 0FF SW6 OFF z 0 011 OFF SW5 NO SW - condition OFF 940 SW4 NO OFF OFF OFF SW3 NO NO OFF SW2 0 F F OFF SW1 N N F(1) Ξ F(2) (2) Ξ 3 Ξ 3 S N – R – A(1) S N - R - A(2)2 2 1 - F - G ø ≃ ≃ Symbol 1 S'N - R -V.G2 VREF V.CI 1 2 1 ÷. Т S – H S – I Ľ THD-THD-Ľ. 1 T s n Ч сΤ 64 <u>(+)</u> REC output SN ratio (A)(1) REC output SN ratio (A) (2) REC output SN ratio (F) (2) output SN ratio (F)(1) Frequency response 6-(1) Frequency response 6-Q) Crosstalk 1→2 (REC) REC output distortion factor (1) REC output distortion factor (2) Crosstalk 2-1 [REC] Signal handling (1) Signal handling (2) Reference voltage Median voltage 2 Modian voltage 1 ltem REC Mea-suring No.

26

27

28

29

53

2

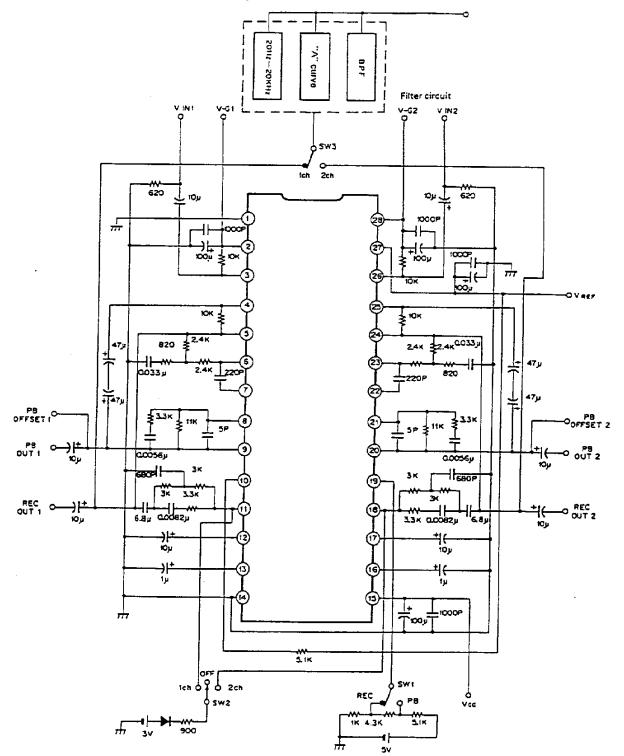
CX20099/CX20148

8

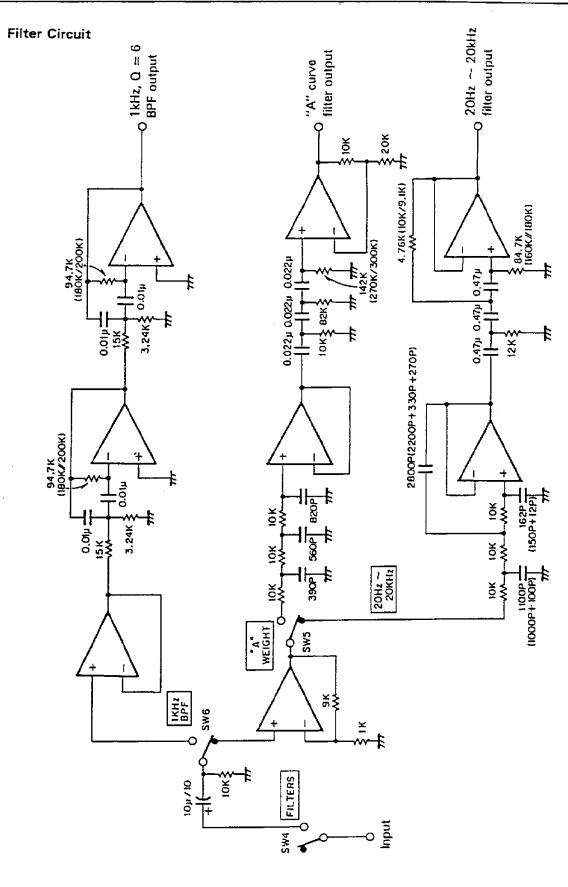
2

17

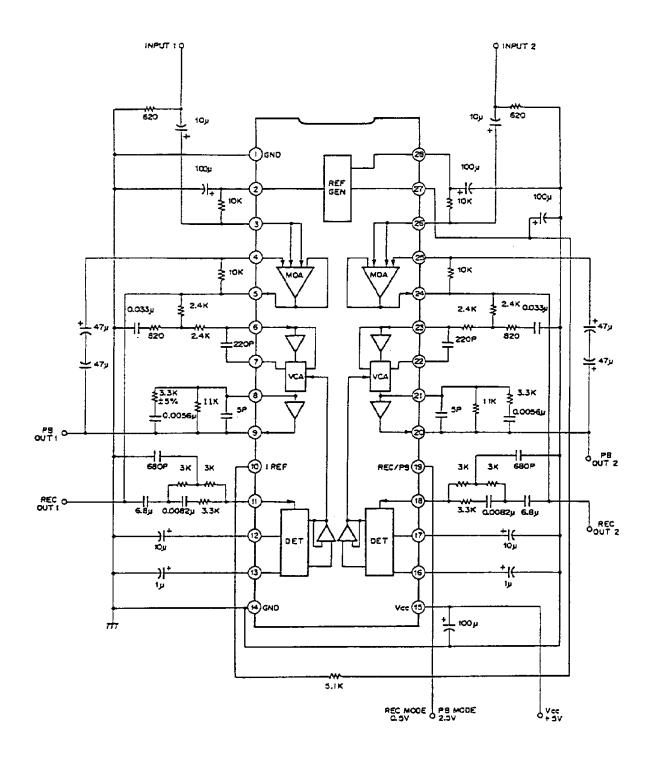
8


2

ន

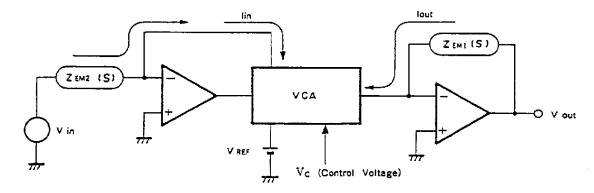

5

23


Electrical Characteristics Measuring Circuit

Example of Application Circuit

SONY


Description of Functions

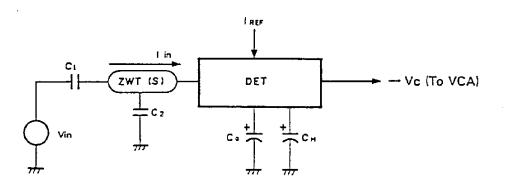
(1) MOA (Main Op Amp)

With the internal switching, it operates as the voltage follower in PB and has the encoding characteristics in REC by inputting to the decoder circuit into the MOA feedback loop.

(2) VCA (Voltage Controlled Amp)

VCA is comprised of the current input and the power supply current divider. Before and after the VCA, the impedance elements (performing the emphasis as well) for the voltage — current and current — voltage conversions are connected.

The VCA control sensitivity is 0.33dB/mV and the VCA gain is determined based on the VREF reference. When (VREF – VC) = 30 mV, the VCA gain becomes 10 dB; when the VCA gain is set as GVCA in the above diagram,


 $VOUT = Vin \cdot GVCA \cdot ZEM1(S)/ZEM2(s).$

In this VCA, the maximum lo value depends on the power supply voltage when lo = lin + lout. That is, the maximum lo will be as follows:

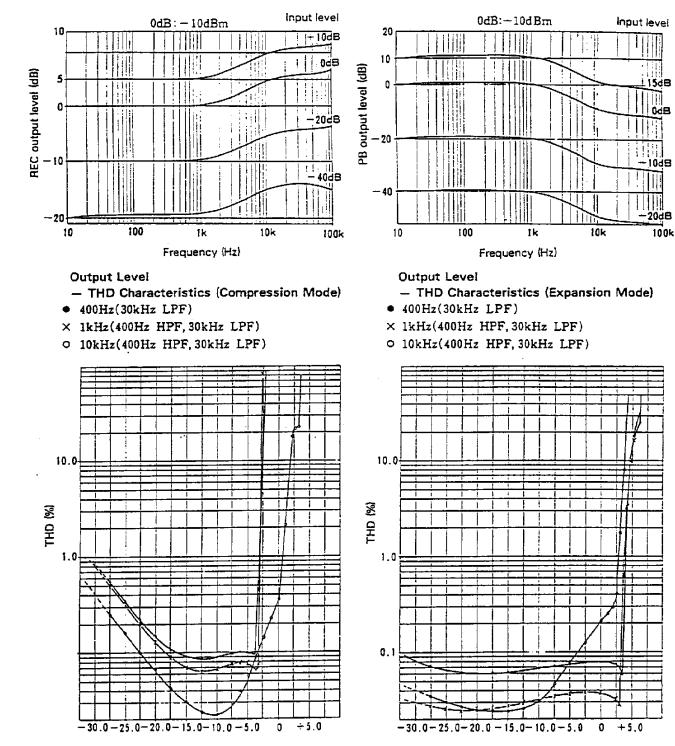
Vcc = $5.0V - lo max. \simeq 1.7mAp-p$. Vcc = $4.2V - lo max. \simeq 1.4mAp-p$.

(3) DET (Detector)

Current input is applied to the detector to cover a wide dynamic range with logarithm conversion.

The DC component in the detector input is eliminated by the capacitor (C1). Capacitor (C2) is also required to eliminate high frequency components as the ZwT(S) impedance is small. In this case, the input current lin will be,

lin = Vin/ZWT(S).

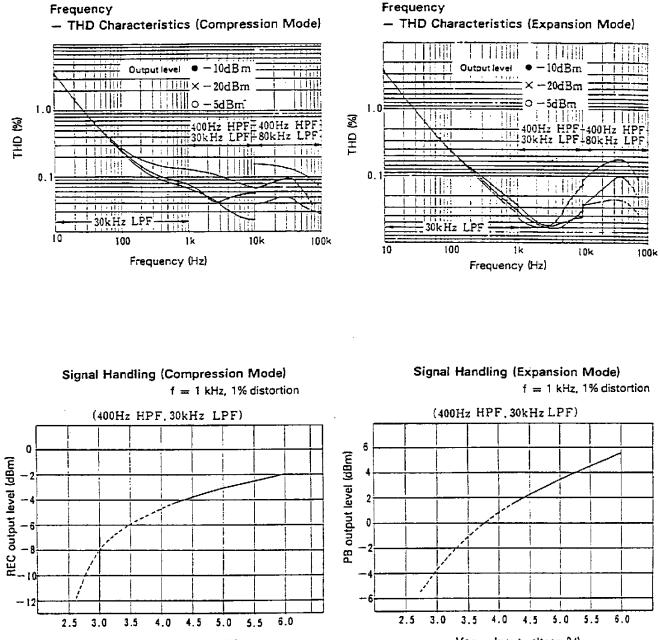

The VCA control voltage VC will be a function of the ratio between lin and lref. When lref = 100 μ A, lin will be 81.4 μ Arms and

Vc = Vref (VCA gain = 0dB).

The recovery time constant is determined by Co. As it is set to be comparatively short, the detector output ripple component will increase causing low band distortion due to modulation from mixing.

Therefore, the distortion factor is corrected using a short recovery time constant by holding the fullwave rectified waveform peaks with CH.

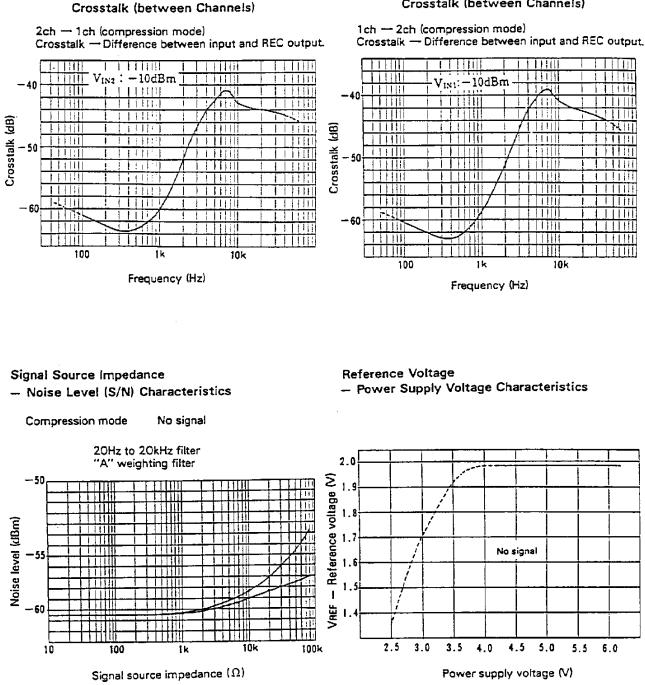
- 11 -


Frequency Characteristics (Compression Mode)

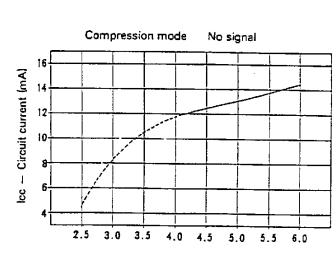
Output level (dBm)

Frequency Characteristics (Expansion Mode)

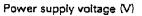
Output level (dBm)


- 12 -

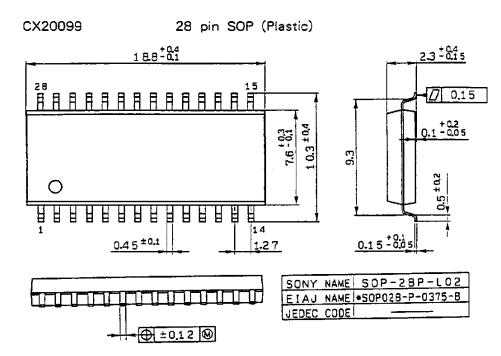
Vcc - Input voltage (V)


Vcc - input voltage (V)

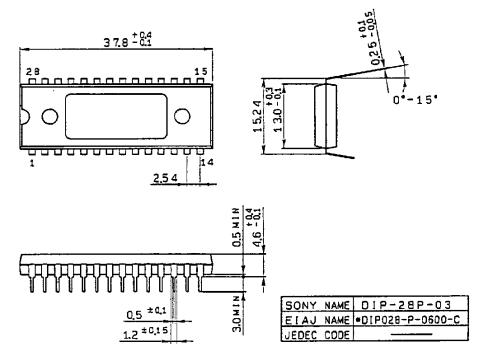
- 13 -



Crosstalk (between Channels)


- 14 -

Circuit Current — Power Supply Voltage Characteristics



CX20148

28 pin DIP (Plastic)

- 16 -