SONY®

CX20172

Balanced Transformer-less DUAL Amplifier for Audio Use

Description

The CX20172 is a bipolar IC designed as a BTL (balanced transformer-less) amplifier or a DUAL amplifier which can drive an $8\,\Omega$ load with one dry cell (1.5 V).

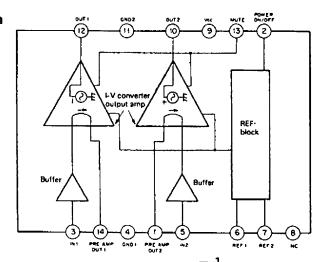
Features

- Operates with one dry cell (operable if Vcc is reduced down to 0.9 V)
- Low power consumption (standard current without signals; 5 mA, 8 Ω load, BTL, Vcc=1.25V)
- Large output (BTL: 80 mW/8 Ω, EIAJ;
 DUAL: 21 mW/CH, 8 Ω load, EIAJ;
 Vcc = 1.5 V for both BTL and DUAL)
- The mode of either BTL amplifier or DUAL amplifier, as well as their gain setting, is selected by combining the IC with external components.
- Muting and power ON/OFF functions incorporated.

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25°C)


 Supply voltage 	Vcc	4.5	V
 Operating temperature 	Topr	-20 to +75	°C
 Storage temperature 	Tstg	-55 to +150	°C
 Allowable power dissipation 	PD	560	mW

Recommended Operating Conditions

Supply voltage
 Vcc
 0.9 to
 2.2

V

Block Diagram

60517-TO

Pin Description

(Ta = 25°C, Supply voltage: 1.25 V)

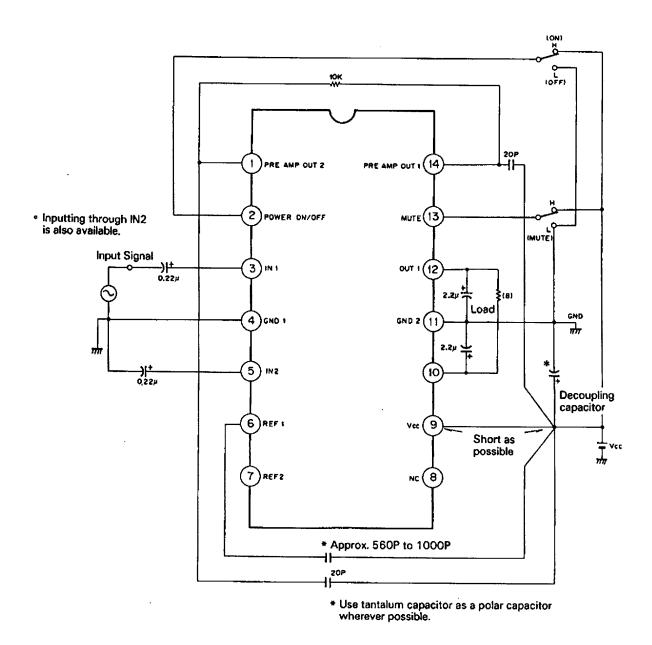
No.	Symbol	Description	Standard pin voltage (V)
1	Pre Amp out 2	Pin to be connected with a load resistor in the preceding-stage buffer amplifier of CH2. See the Electrical Test Circuit application circuit of BTL mode, and DUAL mode.	0.7
2	Power ON/OFF	ON/OFF switching pin for the whole of the IC. H: (power supply) IC ON L: (ground) IC OFF (standard internal equivalent circuit)	-
3	IN1	Input pin for CH1. This pin is connected to the ground via a coupling capacitor, the same one as used for the input pin, when the pin is not used as an input pin in the BTL mode. Standard input resistance: $10 \mathrm{k} \Omega$	_
4	GND1	Grounding mainly for the preceding stage	_
5	IN2	Input pin for CH2. This pin is connected to the ground via a coupling capacitor, the same one as used for the input pin, when the pin is not used as an input pin in the BTL mode. Standard input resistance: 10 k Ω	0.7
6	REF1	Output pin for internal reference voltage (high impedance) for phase compensation	0.7
. 7	REF2	Output pin for internal reference voltage (low impedance)	0.7
8	NC		_
9	Vcc	Power supply pin	
10	OUT2	Output pin for CH2	0.55 (0.74 during MUTE
11	GND2	Grounding mainly for the output stage	_
12	OUT1	Output pin for CH1	0.55 (0.74 during MUTE
13	MUTE	Switch pin to activate the MUTE operation H: (power supply) normal operation L: (ground) MUTE (standard internal equivalent circuit)	_
14	Pre Amp out 1	Pin to be connected with a load resistor in the preceding stage buffer amplifier of CH1. See the Electrical Test Circuit application circuit of BTL mode, and DUAL mode.	0.7

S
<u>::</u>
<u>ত</u>
ē
ac
ā
ច
Ä
걆
ರ್ಷ
쁣

E	Electrical Characteristics	istics					Πa	= 25°C, See the	25°C, See the Electrical Characteristics Test Circuit)	teristi	ss Te	st Çi	cuit)
				Power	Power Source I/O Conditions	nditions							
Š.	. Test Item	Symbol	Switches to be set ON	Supply Voltage Vcc	Signal Input Vin	Signal Output Vot:T	Test Points	Measurement M	Measurement Method and Contents	Min.	Тур.	Мах.	Unit
-	Current consumption 1	l Ion	SS	1.25(V)			A METER(DC)	Current consumption in BTL with an In load and no signal input	on in BTL with an 8	2.5	5.0	11.0	ΨĄ
	<u>.</u>		S7				Vout (DC)	CH1 DC Output	(CH1 DC output voltage) — (CH2 DC	í		5	:
N	Output offset voltage	71 QA	S6	-			Vour(DC)	CH2 DC Output voltage	calculated in BTL with an 8 th load	ا ا	>	₹	È
က	Current consumption 2	Loer	S3. S4. S5	2.0(V)			A METER(DC)	Current consumptions in Power OFF, MUTE	ns in Power OFF,		0	10	/به
4	Gain BTL 1	Gerta	SI	1.25(V)	Adjustment	-20dBm	VIN, VOUT (AC)	Gain for the output of _ 30 dBm	of - 20 dBm	23.5	25.5	28.0	θВ
22	Gain BTL 2	GHTL2	22	0.9(V)	-	-		Dani loi me outh		22.5	24.5	28.0	фB
ع	∆Gain BTL	∆Gsrt.	Arithmetic	1	ı	ı	١	∆GHTL = GHTLI GHTL!	1,1	-	0.1	3.0	dB
	THD BTL	Тноит	SI	1.25(V)	Adjustment	-10dBm	Vour (AC)	THD (BTL) for the output of dBm	ontput of - 10		1.5	2.5	×
∞	EIAJ maximum output BTL	Phtlmax	S1	1.5(V)	-	7.010HT	Vour (AC)	BTL output for the	BTL output for the output THD of 10%	02	28	_ =	≱ E
6	Ripple output voluge BTL	RIPBTL .		1.0(V) +(-30dBm)			VRIF. Vour(AC)	Check the PTL output by overlaying the ripple voltage with I V power supply.	by overlaying the power supply.		- 79	65	dBm
2	Noise output voltage BTL	NETL		2.0(V)			Vour (AC)	Noise output voltage in BTL, with an \(\) load and no signal input	e in BTL with an 8 Input		- 80	-75	dВm
=	Output during MUTE	Мвт	S1, S4	1.0(V)	-20dBm		Vour(AC)	BTL output in the MUTE state	MUTE state		•	100	₫Bm
	СНІ	Gurali	S1, S7, S8, S9, S10, S11, S12	1.25(V)	Adjustment	-264Вш	VIN, VOUT (AC)	CHI input CHI autput	Gain for individual	0 0	91.0	0 76	4
2	Cain DUAL CH2	GDUAL2	S2. S6, S8, S9, S10, S11, S12	-	mb	→	→	CH2 input CH2 output	outputs of - 26 dBm. 8 Ω load			;	;
13	Channel balance	∆Gb12	Arithmetic	l	1	ŀ	!	DGD12 = GRALI - GIKALI	כאדג	-1.5	0	+1.5	gg B
:	CHI	T _{HU} pı	\$1, \$7, \$8, \$9, \$10, \$11, \$12	1.25(V)	Adjustment	-16dBm	Vour(AC)	CHI input CHI output	THD for individual		•		è.
<u> </u>	THU DUAL CH2	THD 02	S2, S6, S8, S9, S10, S11, S12	→	1	-	1	CH2 input CH2 output	outputs of 16 dBm.			:	2
-	EIAJ CHI	Pul MAK	S1, S7, S8, S9, S10, S11, S12	1.5(V)	+	THD10%	-	CHI input CHI output	Output for the individual CH		 &		
3	output dUAL	PDZ MAX	S2, S6, S8, S9, S10, S11, S12	-	→	-		CH2 input CH2 output	THD's of 10%. 8 Ω load				
2	Cross talk -CH2	Став	S1, S6, S8, S9, S10, S11, S12	1.25(V)	Test 12 equivalent to OSC in Grand.		VIN, VINIT (AC)	Citt input Cit2 output	The output level at the CH				43
3	DUAL CH'S CH2	Ствл	S2, S7, S8, S9, S10, S11, S12	→	Test 17 cquivalent to OSC in Girital 2		•••	CH2 input CH1 output	opposite with the input CH				
	• Both signal input Vin and ripple input VRIP are I kHz.	nd ripple in	put Vripare i kHz.					. dBm (600 Ω) 0 dB	dBm (600 Ω) 0 dBm: 774.6mVrms BPF is set to 400 Hz to 30 kHz for AC measurement.	æsurem	ent.		

VOUT METER --- DC ---- AC 400Hz to 30kHz Fiter VOUT METER Vcc Ripple voltage (VRIP) o ss ٠٠٠٠ ميبار \$ 0 8 Jrmo 010 PRE AMP OUT 1 (14) ğ≰ 2 POWER ON/OFF PRE AMP OUT 2 REFI 9 ≹ă 722 V IN METER osc

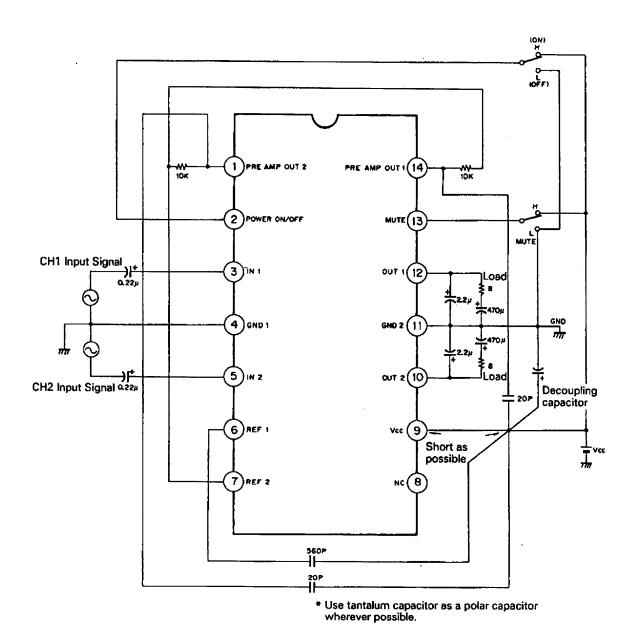
8382383 0011193 508


Electrical Characteristics Test Circuit

Description of Operation

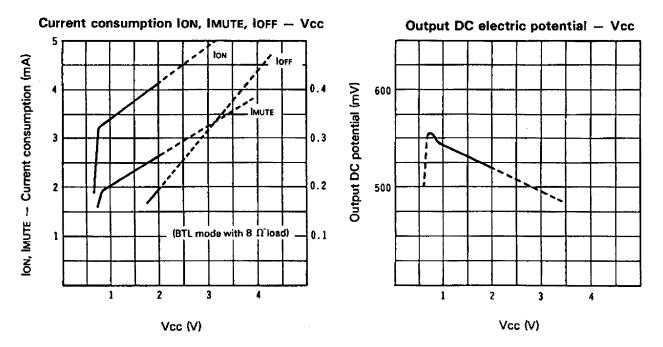
The CX20172 incorporates two buffer amplifiers in the preceding stage and two current input amplifiers in the succeeding stage. Selection between the BTL amplifier and DUAL amplifier is made by altering the method of attaching external components as shown in the Application Circuit.

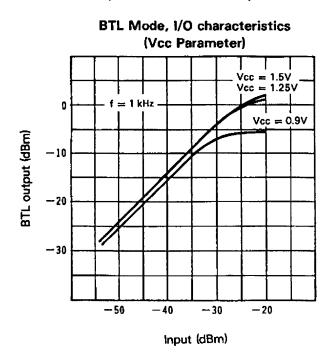
- 1. BTL mode (see the BTL mode Application Circuit)
 - Items 1 to 11 in the Electrical Characteristics are the characteristics for the BTL mode.
 - Input through either IN1 or IN2 results in a reverse-phase output at the output side of the input channel and in the same-phase output at the other, to enable BTL driving of the load between OUT1 and OUT2.
 - Ground the unused input pins via a coupling capacitor which is the same one used for the input pin.
 - Gain setting can be altered by changing values of external resistors connected between Pre Amplifier
 out 1 and 2. Gain decreases as a resistor value between Pin 1 and Pin 14 increases. Reducing a resistor value to increase the gain results in larger output offset and current consumption. I/O characteristics, distortion factor and maximum output change according to resistor values. Specify a set value,
 therefore, in view of input level, output level, distortion and power consumption.
 - The value of a phase-compensation capacitor can be altered considerably according to patterns on mounting substrate.
- 2. Dual mode (see the Dual mode Application Circuit)
 - Items 12 to 16 in the Electrical Characteristics are the characteristics for the Dual mode.
 - Simultaneous input through IN1 and IN2 results in reverse-phase outputs at both output pins to enable DUAL driving.
 - Gain setting can be altered by changing values of external resistors connected between Pre Amplifier
 out 1 and 2 and REF2, similarly to the BTL mode. Gain decreases as resistor value increases. I/O characteristics, distortion factor and maximum output change according to resistor values. The same consideration as in the BTL mode is, therefore, required. Current consumption has, however, less
 dependency on the gain than in BTL.
 - The value of a phase-compensation capacitor can be altered considerably according to patterns on mounting substrate.
- 3. Common functions
- 3.1 REF block
 - Circuit block to generate reference voltage.
 REF1 (Pin 6) is an output from the block (high impedance). This is reduced in its impedance through the buffer amplifier to generate REF2 (Pin 7).
- 3.2 Mute, Power ON/OFF block
 - Grounding the Mute pin (Pin 13) results in the interrupt of the signal route to generate DC voltage of approx. 700 to 765 mV at both output sides of channel (CH).
 - Grounding the Power ON/OFF pin (Pin 2) results in the OFF state of the REF block and the output is grounded.

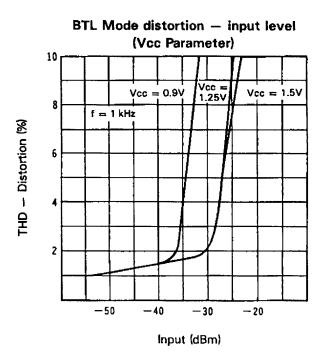

BTL Mode Application Circuit

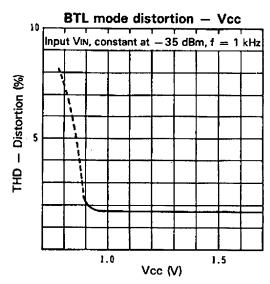
Note) Place a decoupling capacitor between Vcc and GND as close as possible to Vcc and GND2. Assuming this point as the point of power supply or grounding, place (*)-marked components as close as possible.

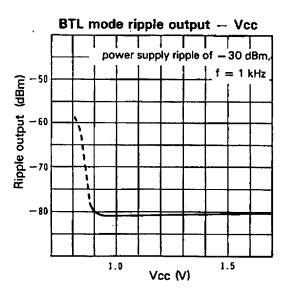
Values of the decoupling capacitor can be altered according to the pattern layouts.


Dual Mode Application Circuit

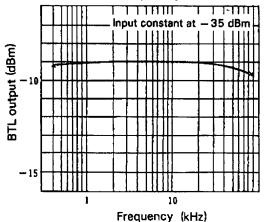

Note) Notes for the above are almost same as in BTL.

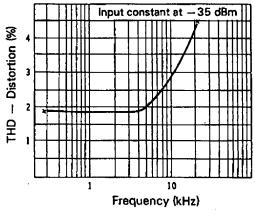

Standard Characteristics

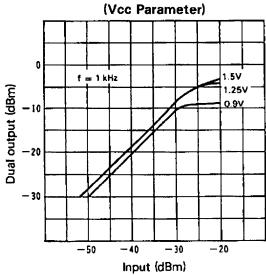

- See "Electrical Characteristics Test Circuit" for the test circuit.
- A resistor between Pin 1 and Pin 14 to determine the gain is of 10 k Ω , unless otherwise specified.
- Measuring temperature is 25°C, unless otherwise specified.

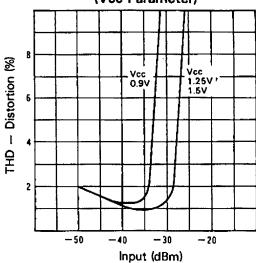


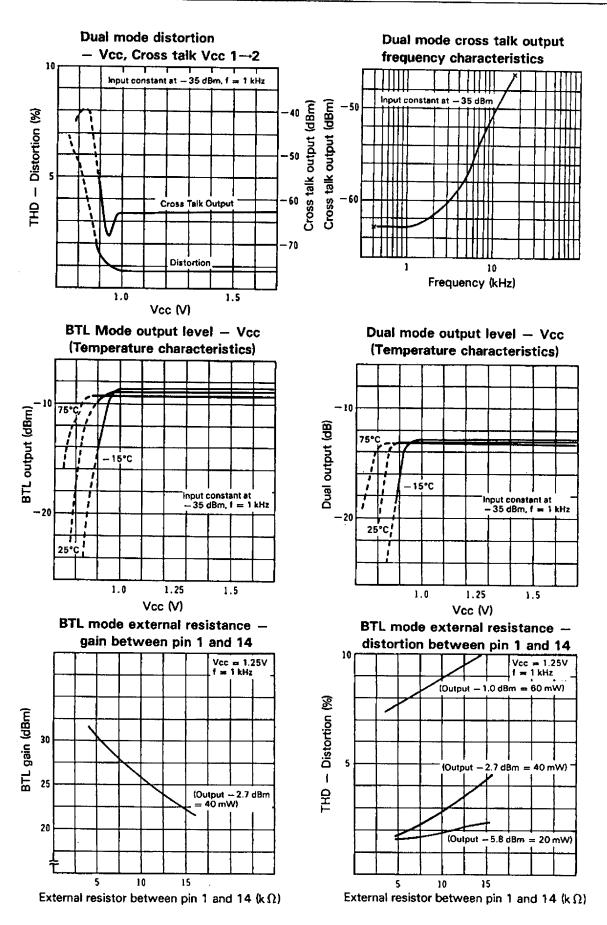
lon and loff are measured conforming to the methods in the measurement 1 and 3. IMUTE represents the current consumption with S4 and S5 ON.



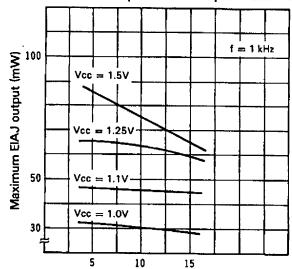



BTL mode output frequency characteristics


BTL mode distortion frequency characteristics



Dual mode I/O characteristics (Vcc Parameter)



Dual mode distortion — input level (Vcc Parameter)

BTL mode external resistance — maximum output between pin 1 and 14

External resistor between pin 1 and 14 $(k \Omega)$