MODULE

Mini-spectrometer TM series C10082CA, C10082CAH, C10083CA, C10083CAH

High sensitivity type (integrated with back-thinned type CCD image sensor)

TM series mini-spectrometers are polychromators integrated with optical elements, an image sensor and a driver circuit. Light to be measured is guided into the entrance port of TM series through an optical fiber and the spectrum measured with the built-in image sensor is output from the USB port to a PC for data acquisition. They are high sensitivity mini-spectrometers employing a back-thinned type CCD image sensor. Their sensitivity is about two orders of magnitudes higher than CMOS type making TM series even more ideal for low-light-level measurement. C10082CAH and C10083CAH are high resolution type (spectral resolution: 1 nm Typ.).

Mini-spectrometer TM series comes supplied with free sample software that allows setting measurement conditions, acquiring and saving data, and displaying graphs. Driver software and DLL are also supplied as accessory items to allow the users to configure their own measurement software.

Features

- Integrated with back-thinned type CCD image sensor: Sensitivity is about two orders of magnitude higher than CMOS type
- High resolution: 1 nm (C10082CAH, C10083CAH)
- High throughput due to transmission grating made of quartz
- Highly accurate optical characteristics
- Wide spectral response range
- Easy to install into equipment
- Wavelength conversion factor *1 is recorded in internal memory

Optical characteristics

Parameter		/IS-CCD C10082CAH	TM-VIS/N C10083CA	NIR-CCD C10083CAH	Unit
Spectral response range	200 t	o 800	320 to	nm	
Spectral resolution Max. (Spectral response half width) *2	6	1 * ³	8 *4	1 * ^{3, *4}	nm
Wavelength reproducibility *5		nm			
Wavelength temperature dependence		nm/°C			
Spectral stray light *2, *6	-3	dB			

Electrical characteristics

Parameter	Specification	Unit
A/D conversion	16	bit
Integration time	10 to 10000	ms
Interface	USB1.1	-
USB bus power current consumption	100	m A
External power supply	5	V

General ratings / Absolute maximum ratings

Parameter	Specification										
Dimensions	9	mm									
Image sensor	Back-thi	-									
Number of pixels		pixels									
Slit (H) × (V) *7	70 × 800	10 × 1000	70 × 800	10 × 1000	μm						
Optical NA	0.22	0.11	0.22	0.11	-						
Connector for optical fiber		-									
Operating temperature *8		°C									
Storage temperature		°C									

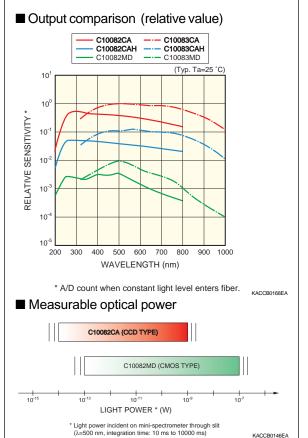
*1: A conversion factor for converting the image sensor pixel number into a wavelength is recorded in the module. A calculation factor for converting the A/D converted count into the input light intensity is not provided.

*2: Depends on the slit opening. Values were measured with the slit listed in the table "■ General ratings / Absolute maximum ratings".

*3: Typical

- *4: λ=320 to 900 nm
- *5: Measured under constant light input conditions
- *6: When monochromatic light of the following wavelengths is input, spectral stray light is defined as the ratio of the count measured at the input wavelength, to the count measured in a region of the input wavelength ±40 nm. C10082CA/C10082CAH: 500 nm, C10083CA/C10083CAH: 650 nm

HAMAMATSU

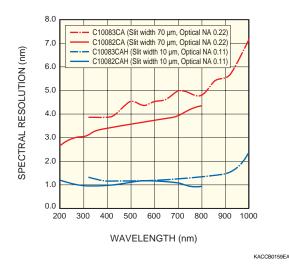

*7: Entrance slit aperture size

*8: No condensation

Applications

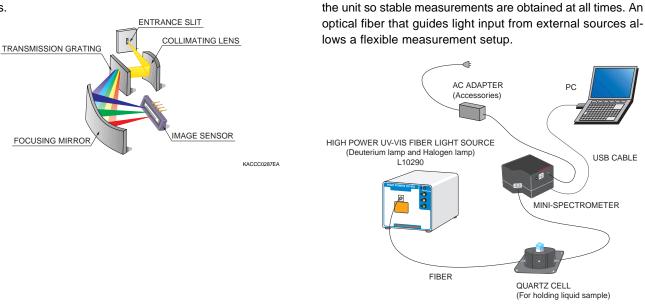
- Low-light-level measurement such as fluorescence measurement
- Semiconductor process control
- Evaluation of light source characteristics such as LED

— Comparison of CCD type and CMOS type —



1

Light spectrally separated by a grating is focused according to light wavelength on predetermined image sensor positions, and high-order light is also input onto positions at integer-multiples of wavelengths. In these mini-spectrometers an optical filter is attached to the image sensor to cut off high-order light, but this also causes a drop in the image sensor output at the following wavelengths.


C10082CA/10082CAH: Near 340 nm and 500 nm, C10083CA/C10083CAH: Near 500 nm and 700 nm Types not using a high-order light cut-off filter are also available. Please specify by adding "-01" to the type number when ordering. (Example: C10082CA-01)

Spectral resolution vs. wavelength

Optical component layout

TM series mini-spectrometers use a transmission holographic grating made of quartz and precision optical components arranged on a rugged optical base, making it possible to deliver high throughput and highly accurate optical characteristics.

Connection example (transmission light measurement)

Light to be measured is guided into the entrance port of TG

series through an optical fiber and the spectrum measured

with the built-in image sensor is output through the USB port

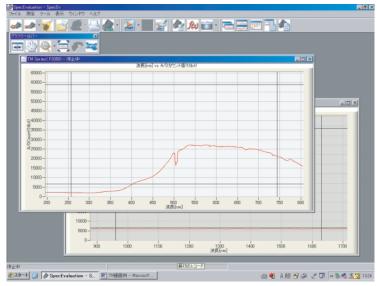
to a PC for data acquisition. There are no moving parts inside

KACCC0317EA

Mini-spectrometer TM series C10082CA, C10082CAH, C10083CA, C10083CAH

Dedicated software package (supplied with unit)

Installing the dedicated software package (containing sample software, device driver, DLL)*9 into your PC allows running the following basic tasks:


- · Measurement data acquisition and save
- Measurement condition setup
- \cdot Module information acquisition
- (wavelength conversion factor, polychromator type, etc.)
- Graphic display
- · Arithmetic operation

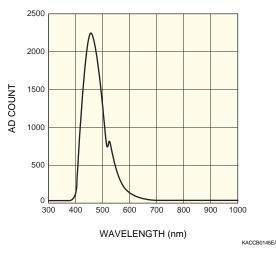
Pixel number to wavelength conversion Dark subtraction Comparison calculation with reference data (transmittance, reflectance) Gaussian approximation

(peak position and count, FWHM) Note: Two or more mini-spectrometers can be connected and used with one PC

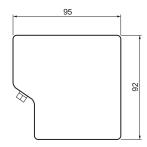
simultaneously. *9: Compatible OS: Microsoft Windows

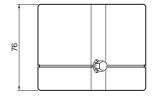
Professional Edition 2000 (SP3 or later) and XP (SP1a or later)

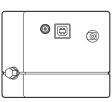
Device driver and DLL for controlling hardware are also provided.


You can develop your own measurement programs by using a software development environment that includes Microsoft Visual C++ and Visual Basic.*¹⁰ The DLL provides functions such as USB port open/close, measurement condition setup, measurement data and module information acquisition.

*10: Operation of the device driver and DLL has been verified only with Microsoft Visual C++® and Visual Basic®.


Microsoft Visual C++ and Microsoft Visual Basic are either registerd trademarks or trademarks of Microsoft Corporation in the United States and other countries.


Measurement example (C10083CA)


Fluorescence measurement of quinine solution (1000 ppm)

Dimensional outline (unit: mm)

KACCA0188EC

Accessories

- · USB cable
- · Dedicated software (sample software, device driver, DLL)
- · AC adapter (for power supply)

Options (sold separately)

Optical fibers for light input

Type. No	Product name	Core diameter (µm)	Specification
A9762-01	Fiber for UV/visible range (resistance to UV)	600	N.A.=0.22, length 1.5 m, connectorized SMA905D at both ends

Tura Ma		Turne						Spe	ectral re	esponse	range	(nm)					Spectral resolution	
Type No.		Туре		200	400	600		800	1000	1200 1400		1600	1800	2000	2200	00	Max. (nm)	Image sensor
C10082CA		TM-UV/VIS-CCD High sensitivity															6	Back-thinned type
C10082CAH		TM-UV/VIS-CCD High resolution			200 t	o 800											1*	CCD image sense
C10082MD	series	TM-UV/VIS-MOS Wide dynamic range															6	CMOS linear image sensor
C10083CA	TM s	TM-VIS/NIR-CCD High sensitivity															8 (λ=320 to 900 nm)	Back-thinned type
C10083CAH		TM-VIS/NIR-CCD High resolution				320 to	o 100	0									1 [*] (λ=320 to 900 nm)	CCD image sense
C10083MD		TM-VIS/NIR-MOS Wide dynamic range															8	CMOS linear image sensor
C9404CA		TG-UV-CCD High sensitivity															3	Back-thinned type CCD image sense
C9404CAH	s	TG-UV-CCD High resolution		200 to	400												1*	Back-thinned typ CCD image sense
C9404MC	serie:	TG-UV-MOS Wide dynamic range															3	CMOS linear image sensor
C9405CA	19	TG-SWNIR-CCD High sensitivity					500	to 110									5 (λ=550 to 900 nm)	Back-thinned type CCD image sense
C9405MC		TG-SWNIR-MOS Wide dynamic range					500										5 (λ=550 to 1100 nm)	NMOS linear image sensor
C9406GC	ş	TG-NIR Non-cooled type								0004	o 1700						7	
C9913GC	series	TG-cooled NIR-I Low noise (cooled type)								900 t	51700						7	InGaAs linear image sensor
C9914GB	19	TG-cooled NIR-II Low noise (cooled type)										1100 to	2200				8	
C9407MA	RC series	RC-VIS-MOS Spectrometer module			34	0 to 78	0]									9	CMOS linear image sensor
Typ. OEM model																		
Type No.		Туре	2	200	400	600		Spe 800	ectral re	esponse	range	(nm) 1600	1800	2000	220	00	Spectral resolution Max. (nm)	Image sensor
C9409MA	RC series	RC-VIS-MOS			34	0 to 78	0	1									9	CMOS linear image sensor

HAMAATSU Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2007 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184, www.hamamatsu.com US.A: Hamantsu Corporation: 360 Foothill Road, PCBxs 6910, Bridgewater, N.J. 08807-0910, U.S.A., Talephone: (1) 908-231-218 Germany: Hamantsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (34) 08152-3750, Fax: (49) 08152-2658 France: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Italia S.R.L: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741

Cat. No. KACC1126E02 Oct. 2007 DN

4