RENESAS

M52055P

3-Channel Analog Switch

Description

The M52055 is semiconductor integrated circuit for electronic switches used in VCR, AUDIO signal processing applications. It contains three channel two input switch circuits with each switch is controlled independently.

Features

- Low offset voltage at output: Typ. 5 mV UNDER
- Low switching noise
- Wide dynamic range
- Wide frequency range: Typ. 40 MHz OVER
- Low crosstalk
- High speed response: Typ. 0.2μ s UNDER
- Low power consumption

Application

- VCR, AUDIO, and other applications

Recommended Operating Condition

- Supply voltage range: 4.5 to 13 V

Block Diagram

Pin Configuration

\square

Absolute Maximum Rating

(Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Symbol	Item	Ratings	Units
Vcc	Supply voltage	14	V
Pd	Power dissipation	1000	mW
Topr	Operating ambient temperature	-20 to 75	${ }^{\circ} \mathrm{C}$
Tstg	Storing temperature	-40 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{k} \theta$	Thermal derating	10	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Thermal Derating Curve

Electrical Characteristics

(unless otherwise noted, the ambient temperature $(\mathrm{Ta})=25^{\circ} \mathrm{C}$, power supply voltage $(\mathrm{Vcc})=9 \mathrm{~V}$, and current direction = current flowing into the IC is " + ")

No.	Measurement item	Symbol	Measurement conditions	Limits			Unit
				Min.	Typ.	Max.	
1	Circuit current 1	Icc 1	No signal input. Measure the current flowing into pin 13.	5.2	7.1	9.0	mA
2	Circuit current 2	$\mathrm{I}_{\mathrm{C}} 2$	No signal input. Measure the current flowing into pin 13 with $\mathrm{Vcc}=5 \mathrm{~V}$.	2.4	3.4	4.4	mA
3	S1 frequency characteristics 1A, 1B	$\mathrm{F}_{1 \mathrm{~A}}$	Input: $0.5-\mathrm{Vpp}$ sine wave (SG1). Voltage gain at $10-\mathrm{MHz}$ frequency. E1, E2 and E3: 5 V . $2-k \Omega$ load connected to output pin.	-0.6	-0.1	0.4	dB
4		$\mathrm{F}_{1 \mathrm{~B}}$		-0.6	-0.1	0.4	dB
5	S2 frequency characteristics 2A, 2B	$\mathrm{F}_{2 \mathrm{~A}}$		-0.6	-0.1	0.4	dB
6		$\mathrm{F}_{2 \mathrm{~B}}$		-0.6	-0.1	0.4	dB
7	S3 frequency characteristics$3 \mathrm{~A}, 3 \mathrm{~B}$	$\mathrm{F}_{3 \mathrm{~A}}$		-0.6	-0.1	0.4	dB
8		$F_{3 B}$		-0.6	-0.1	0.4	dB
9	S1 voltage gain 1A, 1B	$\mathrm{G}_{1 \mathrm{~A}}$	Input: 0.5-Vpp sine wave (SG1)	-0.6	-0.1	0.4	dB
10		$\mathrm{G}_{1 \mathrm{~B}}$	Voltage gain at $1-\mathrm{MHz}$ frequency	-0.6	-0.1	0.4	dB
11	S2 voltage gain 2 A ,$2 \mathrm{~B}$	$\mathrm{G}_{2 \mathrm{~A}}$	E1, E2 and E3: 5 V	-0.6	-0.1	0.4	dB
12		$\mathrm{G}_{2 \mathrm{~B}}$		-0.6	-0.1	0.4	dB
13	S3 voltage gain$3 \mathrm{~A}, 3 \mathrm{~B}$	$\mathrm{G}_{3 \mathrm{~A}}$		-0.6	-0.1	0.4	dB
14		$\mathrm{G}_{3 \mathrm{~B}}$		-0.6	-0.1	0.4	dB
15	S1 input bias voltage 1A, 1B	$\mathrm{V}_{\text {IDC }} 1 \mathrm{~A}$	No signal input.	4.1	4.6	5.1	V
16		$\mathrm{V}_{\text {IDC }} 1 \mathrm{~B}$	DC voltage at input pin.	4.1	4.6	5.1	V
17	S2 input bias voltage 2A, 2B	$\mathrm{V}_{\text {IDC }} 2 \mathrm{~A}$		4.1	4.6	5.1	V
18		$\mathrm{V}_{\text {IDC }} 2 \mathrm{~B}$		4.1	4.6	5.1	V
19	S3 input bias voltage$3 \mathrm{~A}, 3 \mathrm{~B}$	$\mathrm{V}_{\text {IDC }} 3 \mathrm{~A}$		4.1	4.6	5.1	V
20		$\mathrm{V}_{\text {IDC }} 3 \mathrm{~B}$		4.1	4.6	5.1	V
21	S1 output bias voltage	$\mathrm{V}_{\text {ODC }} 1$	No signal input.	3.05	3.2	3.35	V
22	S2 output bias voltage	$\mathrm{V}_{\text {ODC }} 2$	DC voltage at output pin.	3.05	3.2	3.35	V
23	S3 output bias voltage	$\mathrm{V}_{\text {ODC }} 3$	Pins 2, 7 and 12 connected to GND.	3.05	3.2	3.35	V
24	Current flow into control pins$1: S 1, S 2, S 3$	$\underline{\mathrm{I}_{\text {IN }} 11}$	Current flow into each of pins 2, 7 and 12 when these pin voltage is 9 V .	0.35	0.6	1	mA
25		$\underline{\mathrm{IN}} 12$		0.35	0.6	1	mA
26		IIN 13		0.35	0.6	1	mA
27	Current flow into control pins 2: S1, S2, S3	$\mathrm{l}_{\mathrm{IN}} 21$	Current flow into each of pins 2,	0	1.5	10	$\mu \mathrm{A}$
28		1 IN 22	7 and 12 when these pin voltage	0	1.5	10	$\mu \mathrm{A}$
29		1 IN 23	is 5 V .	0	1.5	10	$\mu \mathrm{A}$
30	Current flow into control pins3: S1, S2, S3	$\mathrm{l}_{\text {IN }} 31$	Current flow into each of pins 2,	-5	0	2	$\mu \mathrm{A}$
31		1 IN 32	7 and 12 when these pin voltage	-5	0	2	$\mu \mathrm{A}$
32		$\mathrm{I}_{\text {IN }} 33$	is 0 V .	-5	0	2	$\mu \mathrm{A}$
33a	Threshold voltage S1, S2,	$\mathrm{V}_{\text {IC1L }}$	Input: $0.5-\mathrm{Vpp}$ sine wave, $\mathrm{f}=1$	1.7	-	2.7	V
33b		$\mathrm{V}_{\text {IC1H }}$	$\mathrm{MHz}(\mathrm{SG} 1) .{ }^{1+}{ }^{2}$	1.7	-	2.7	V
34a		$\mathrm{V}_{\text {IC2L }}$		1.7	-	2.7	V
34b	S3	$\mathrm{V}_{\text {IC2H }}$		1.7	-	2.7	V
35a		VIC3L		1.7	-	2.7	V
35b		$\mathrm{V}_{\text {IC3H }}$		1.7	-	2.7	V

Electrical Characteristics (cont)

No.	Measurement item	Symbol	Measurement conditions	Limits			Unit
				Min.	Typ.	Max.	
36	S1 2nd harmonic distortion 1A, 1B	$\mathrm{H}_{1 \text { A }}$	Input: $4.5-\mathrm{Vpp}$ sine wave, $\mathrm{f}=5$ MHz (SG1). E1, E2 and E3: 5 V Voltage ratio of $10-\mathrm{MHz}$ output element against $5-\mathrm{MHz}$ output element $2-k \Omega$ load connected to output pin	-	-60	-50	dB
37		H_{18}		-	-60	-50	dB
38	S2 2nd harmonic distortion 2A, 2B	$\mathrm{H}_{2 \mathrm{~A}}$		-	-60	-50	dB
39		$\mathrm{H}_{2 B}$		-	-60	-50	dB
40	S3 2nd harmonic distortion 3A	$\mathrm{H}_{3 \mathrm{~A}}$		-	-60	-50	dB
41	S3 2nd harmonic distortion	$\mathrm{H}_{3 \mathrm{~B}}$	Input: 4.5-Vpp sine wave, $\mathrm{f}=5$ MHz (SG1).	-	-60	-50	dB
42	S1 total harmonic distortion ratio 1A, 1B	THD1A	Measure THD with sine wave input of 1 Vrms and $\mathrm{f}=5 \mathrm{MHz}$ (SG1). E1, E2 and E3: 5 V .	-	0.05	0.2	\%
43		THD1B		-	0.05	0.2	\%
44	S2 total harmonic distortion ratio 2A, 2B	THD2A		-	0.05	0.2	\%
45		THD2B		-	0.05	0.2	\%
46	S3 total harmonic distortion ratio$3 \mathrm{~A}, 3 \mathrm{~B}$	THD3A		-	0.05	0.2	\%
47		THD3B		-	0.05	0.2	\%
48	S1 crosstalk 1B-1A, 1A-1B	CT11	Input: $0.5-\mathrm{Vpp}$ sine wave, $\mathrm{f}=5$ MHz (SG1). Voltage ratio of non-input-side output against input-side output when the non-input-side pin is connected to GND with $0.01 \mu \mathrm{~F}$. E1, E2 and E3: 5 V	-	-70	-60	dB
49		CT12		-	-70	-60	dB
50	S2 crosstalk 2B-2A, 2A-2B	CT21		-	-70	-60	dB
51		CT22		-	-70	-60	dB
52	S3 crosstalk 3B-3A, 3A-3B	CT31		-	-70	-60	dB
53		CT32		-	-70	-60	dB
54	S1 crosstalk between channels $2 A-1 A, 2 B-1 A, 3 A-1 A, 3 B-1 A$	CT13	Input: $0.5-\mathrm{Vpp}$ sine wave, $\mathrm{f}=5$ MHz (SG1). Voltage ratio of no-input-side output against input-side output when no-input-side pin is connected to GND with $0.01 \mu \mathrm{~F}$. E1, E2 and E3: 5 V	-	-70	-60	dB
55		CT14		-	-70	-60	dB
56		CT15		-	-70	-60	dB
57		CT16		-	-70	-60	dB
58	2A-1B, 2B-1B, 3A-1B, 3B-1B	CT17		-	-70	-60	dB
59		CT18		-	-70	-60	dB
60		CT19		-	-70	-60	dB
61		CT1A		-	-70	-60	dB
62	S2 crosstalk between channels $1 \mathrm{~A}-2 \mathrm{~A}, 1 \mathrm{~B}-2 \mathrm{~A}, 3 \mathrm{~A}-2 \mathrm{~A}, 3 \mathrm{~B}-2 \mathrm{~A}$	CT23		-	-70	-60	dB
63		CT24		-	-70	-60	dB
64		CT25		-	-70	-60	dB
65		CT26		-	-70	-60	dB
66	$\begin{aligned} & 1 \mathrm{~A}-2 \mathrm{~B}, \\ & 1 \mathrm{~B}-2 \mathrm{~B}, \\ & 3 \mathrm{~A}-2 \mathrm{~B}, \\ & 3 \mathrm{~B}-2 \mathrm{~B} \end{aligned}$	CT27		-	-70	-60	dB
67		CT28		-	-70	-60	dB
68		CT29		-	-70	-60	dB
69		CT2A		-	-70	-60	dB
70	S3 crosstalk between channels $1 \mathrm{~A}-3 \mathrm{~A}, 1 \mathrm{~B}-3 \mathrm{~A}, 2 \mathrm{~A}-3 \mathrm{~A}, 2 \mathrm{~B}-3 \mathrm{~A}$	CT33		-	-70	-60	dB
71		CT34		-	-70	-60	dB
72		CT35		-	-70	-60	dB
73		CT36		-	-70	-60	dB
74	$\begin{aligned} & 1 \mathrm{~A}-3 \mathrm{~B}, \\ & 1 \mathrm{~B}-3 \mathrm{~B}, \\ & 2 \mathrm{~A}-3 \mathrm{~B}, \\ & 2 \mathrm{~B}-3 \mathrm{~B} \end{aligned}$	CT37		-	-70	-60	dB
75		CT38		-	-70	-60	dB
76		CT39		-	-70	-60	dB
77		CT3A		-	-70	-60	dB

Electrical Characteristics (cont)

No.	Measurement item	Symbol	Measurement conditions	Limits			Unit
				Min.	Typ.	Max.	
78	S1 output	Vos1	No signal input.	-10	0	10	mV
	DC offset voltage		E1, E2 and E3: 5 V .				
79	S2 output	$\mathrm{V}_{\mathrm{os}} 2$	DC voltage difference in output. ${ }^{* 3}$	-10	0	10	mV
	DC offset voltage						
80	S3 output	Vos3		-10	0	10	mV
	DC offset voltage						
81a	Threshold voltage ($\mathrm{Vcc}=5 \mathrm{~V}$) S1, S2, S3	$\mathrm{V}_{\text {IC4L }}$	Input: $0.5-\mathrm{Vp}-\mathrm{p}$ sine wave, $\mathrm{f}=1$ MHz (SG1). $\mathrm{Vcc}=5 \mathrm{~V} .{ }^{* 4}{ }^{* 5}$	1.3	-	2.3	V
81b		$\mathrm{V}_{\text {IC4H }}$		1.3	-	2.3	V
82a		$\mathrm{V}_{\text {IC5L }}$		1.3	-	2.3	V
82b		$\mathrm{V}_{\text {IC5 }}$		1.3	-	2.3	V
83a		$\mathrm{V}_{\text {IC6L }}$		1.3	-	2.3	V
83b		$\mathrm{V}_{\text {IC6H }}$		1.3	-	2.3	V
84a	Threshold voltage (Vcc = 12 V) S1, S2, S3	$\mathrm{V}_{167 \mathrm{~L}}$	Input: $0.5-\mathrm{Vp}-\mathrm{p}$ sine wave, $\mathrm{f}=1$$\begin{aligned} & \text { MHz (SG1). } \\ & \text { Vcc = } 12 \text { V. }{ }^{* 6 * 7} \end{aligned}$	2.0	-	3.0	V
84b		$\mathrm{V}_{\text {IC7H }}$		2.0	-	3.0	V
85a		$\mathrm{V}_{\text {IC8L }}$		2.0	-	3.0	V
85b		$\mathrm{V}_{\text {IC8H }}$		2.0	-	3.0	V
86a		V Ic9L		2.0	-	3.0	V
86b		$\mathrm{V}_{\text {IC9H }}$		2.0	-	3.0	V

Typical Characteristics

Rev.1.0, Sep.22.2003, page 6 of 13

Method to Measure Electric Characteristics

1. Measurement Circuit

2 Measurement Conditions

No.	Symbol	Switch status												Point to be measured
		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	
1	Icc 1	a	a	a	d	b	b							A_{1}
2	$\mathrm{I}_{\mathrm{c}} 2$	a	a	a	d	b	b							A_{1}
3	$\mathrm{F}_{1 \mathrm{~A}}$	a			a		a	b	b	b	b	b	a	V_{1}
4	$\mathrm{F}_{1 \mathrm{~B}}$	b			a	a		a	b	b	b	b	b	V_{1}
5	$\mathrm{F}_{2 \mathrm{~A}}$		a		b		a	b	b	b	a	b	b	V_{2}
6	$\mathrm{F}_{2 \mathrm{~B}}$		b		b	a		b	b	b	b	a	b	V_{2}
7	$\mathrm{F}_{3 \mathrm{~A}}$			a	c		a	b	a	b	b	b	b	V_{3}
8	$\mathrm{F}_{3 \mathrm{~B}}$			b	c	a		b	b	a	b	b	b	V_{3}
9	$\mathrm{G}_{1 \mathrm{~A}}$	a			d		a	b	b	b	b	b	a	V_{1}
10	$\mathrm{G}_{1 \mathrm{~B}}$	b			d	a		a	b	b	b	b	b	V_{1}
11	$\mathrm{G}_{2 \mathrm{~A}}$		a		d		a	b	b	b	a	b	b	V_{2}
12	$\mathrm{G}_{2 \mathrm{~B}}$		b		d	a		b	b	b	b	a	b	V_{2}
13	G_{3}			a	d		a	b	a	b	b	b	b	V_{3}
14	$\mathrm{G}_{3 \mathrm{~B}}$			b	d	a		b	b	a	b	b	b	V_{3}
15	$\mathrm{V}_{\text {IDC }} 1 \mathrm{~A}$	a			d	b	b	a	a	a	a	a	b	V_{4}
16	V IDC 1B	a			d	b	b	b	a	a	a	a	a	V_{4}
17	VIdC 2A		a		d	b	b	a	a	a	b	a	a	V_{4}
18	$\mathrm{V}_{\text {IDC }}$ 2B		a		d	b	b	a	a	a	a	b	a	V_{4}
19	VIDC 3A			a	d	b	b	a	b	a	a	a	a	V_{4}
20	$\mathrm{V}_{\text {IDC }}$ 3B			a	d	b	b	a	a	b	a	a	a	V_{4}
21	$\mathrm{V}_{\text {ODC }} 1$	a			d	b	b	a	b	b	b	b	a	V_{1}
22	$\mathrm{V}_{\text {odc }} 2$		a		d	b	b	b	b	b	a	a	b	V_{2}
23	$\mathrm{V}_{\text {OdC }} 3$			a	d	b	b	b	a	a	b	b	b	V_{3}
24	$\mathrm{I}_{\text {IN }} 11$	b			d	b	b							A_{2}
25	$\mathrm{I}_{\text {IN }} 12$		b		d	b	b							A_{3}
26	$\mathrm{I}_{\text {IN }} 13$			b	d	b	b							A_{4}
27	$\mathrm{I}_{\text {IN }} 21$	b			d	b	b							A_{2}
28	$\mathrm{l}_{\text {IN }} 22$		b		d	b	b							A_{3}
29	$\mathrm{I}_{\text {IN }} 23$			b	d	b	b							A_{4}
30	IIN 31	a			d	b	b							A_{2}
31	1 IN 32		a		d	b	b							A_{3}
32	1 IN 33			a	d	b	b							A_{4}
33a	$\mathrm{V}_{\text {IC1L }}$	b			d	b	a	b	b	b	b	b	a	$\mathrm{E}_{1}^{\text {Note1 }}$
33b	$\mathrm{V}_{\text {IC1H }}$					a	b	a					b	$\mathrm{E}_{1}{ }^{\text {Note2 }}$
34a	$\mathrm{V}_{\text {IC2L }}$		b		d	b	a	b	b	b	a	b	b	$\mathrm{E}_{2}^{\text {Note1 }}$
34b	$\mathrm{V}_{\text {IC2H }}$					a	b				b	a		$\mathrm{E}_{2}{ }^{\text {Note2 }}$
35a	VIC3L			b	d	b	a	b	a	b	b	b	b	$\mathrm{E}_{3}^{\text {Note1 }}$
35b	$\mathrm{V}_{\text {IC3H }}$					a	b		b	a				$\mathrm{E}_{3}^{\text {Note2 }}$
36	$\mathrm{H}_{1 \mathrm{~A}}$	a			a	b	a	b	b	b	b	b	a	V_{1}
37	H_{18}	b			a	a	b	a	b	b	b	b	b	V_{1}
38	$\mathrm{H}_{2} \mathrm{~A}$		a		b	b	a	b	b	b	a	b	b	V_{2}
39	$\mathrm{H}_{2 \mathrm{~B}}$		b		b	a	b	b	b	b	b	a	b	V_{2}
40	H_{3}			a	c	b	a	b	a	b	b	b	b	V_{3}
41	H_{3}			b	c	a	b	b	b	a	b	b	b	V_{3}

Measurement Conditions (cont)

No.	Symbol	Switch status												Point to be measured
		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	
42	THD1A	a			d	b	a	b	b	b	b	b	a	V_{1}
43	THD1B	b			d	a	b	a	b	b	b	b	b	V_{1}
44	THD2A		a		d	b	a	b	b	b	a	b	b	V_{2}
45	THD2B		b		d	a	b	b	b	b	b	a	b	V_{2}
46	THD3A			a	d	b	a	b	a	b	b	b	b	V_{3}
47	THD3B			b	d	a	b	b	b	a	b	b	b	V_{3}
48	CT11	a			a	a	b	a	b	b	b	b	a	V_{1}
49	CT12	b			a	b	a	a	b	b	b	b	a	V_{1}
50	CT21		a		b	a	b	b	b	b	a	a	b	V_{2}
51	CT22		b		b	b	a	b	b	b	a	a	b	V_{2}
52	CT31			a	c	a	b	b	a	a	b	b	b	V_{3}
53	CT32			b	c	b	a	b	a	a	b	b	b	V_{3}
54	CT13	a	b		a	b	a	b	b	b	a	b	b	V_{1}
55	CT14	a	a		a	a	b	b	b	b	b	a	b	V_{1}
56	CT15	a		b	a	b	a	b	a	b	b	b	b	V_{1}
57	CT16	a		a	a	a	b	b	b	a	b	b	b	V_{1}
58	CT17	b	b		a	b	a	b	b	b	a	b	b	V_{1}
59	CT18	b	a		a	a	b	b	b	b	b	a	b	V_{1}
60	CT19	b		b	a	b	a	b	a	b	b	b	b	V_{1}
61	CT1A	b		a	a	a	b	b	b	a	b	b	b	V_{1}
62	CT23	b	a		b	b	a	b	b	b	b	b	a	V_{2}
63	CT24	a	a		b	a	b	a	b	b	b	b	b	V_{2}
64	CT25		a	b	b	b	a	b	a	b	b	b	b	V_{2}
65	CT26		a	a	b	a	b	b	b	a	b	b	b	V_{2}
66	CT27	b	b		b	b	a	b	b	b	b	b	a	V_{2}
67	CT28	a	b		b	a	b	a	b	b	b	b	b	V_{2}
68	CT29		b	b	b	b	a	b	a	b	b	b	b	V_{2}
69	CT2A		b	a	b	a	b	b	b	a	b	b	b	V_{2}
70	CT33	b		a	c	b	a	b	b	b	b	b	a	V_{3}
71	CT34	a		a	c	a	b	a	b	b	b	b	b	V_{3}
72	CT35		b	a	c	b	a	b	b	b	a	b	b	V_{3}
73	CT36		a	a	c	a	b	b	b	b	b	a	b	V_{3}
74	CT37	b		b	c	b	a	b	b	b	b	b	a	V_{3}
75	CT38	a		b	c	a	b	a	b	b	b	b	b	V_{3}
76	CT39		b	b	c	b	a	b	b	b	a	b	b	V_{3}
77	CT3A		a	b	c	a	b	b	b	b	b	a	b	V_{3}
78	Vos 1	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$			d	b	b	a	b	b	b	b	a	$\mathrm{V}_{1}{ }^{\text {Note3 }}$
79	Vos2		$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$		d	b	b	b	b	b	a	a	b	$\mathrm{V}_{2}{ }^{\text {Note3 }}$
80	Vos3			$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$		b	b	b	a	a	b	b	b	$\mathrm{V}_{3}^{\text {Note3 }}$

Measurement Conditions (cont)

No.	Symbol	Switch status												Point to be measured
		S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	
81a	$\mathrm{V}_{\text {IC4L }}$	b			d	b	a	b	b	b	b	b	a	$\mathrm{E}_{1}^{\text {Note4 }}$
81b	$\mathrm{V}_{\text {IC4H }}$					a	b	a					b	$\mathrm{E}_{1}^{\text {Note5 }}$
82a	$\mathrm{V}_{\text {IC5L }}$		b		d	b	a	b	b	b	a	b	b	$\mathrm{E}_{2}{ }^{\text {Note4 }}$
82b	$\mathrm{V}_{\text {IC5H }}$					a	b				b	a		$\mathrm{E}_{2}{ }^{\text {Note5 }}$
83a	$\mathrm{V}_{\text {IC6L }}$			b	d	b	a	b	a	b	b	b	b	$\mathrm{E}_{3}{ }^{\text {Note4 }}$
83b	$\mathrm{V}_{\text {IC6H }}$					a	b		b	a				$\mathrm{E}_{3}^{\text {Note5 }}$
84a	$\mathrm{V}_{167 \mathrm{~L}}$	b			d	b	a	b	b	b	b	b	a	$\mathrm{E}_{1}{ }^{\text {Note6 }}$
84b	$\mathrm{V}_{\text {IC7H }}$					a	b	a					b	$\mathrm{E}_{1}{ }^{\text {Note7 }}$
85a	VIC8L		b		d	b	a	b	b	b	a	b	b	$\mathrm{E}_{2}^{\text {Note6 }}$
85b	$\mathrm{V}_{168 \mathrm{H}}$					a	b				b	a		$\mathrm{E}_{2}{ }^{\text {Note7 }}$
86a	$\mathrm{V}_{\text {IC9L }}$			b	d	b	a	b	a	b	b	b	b	$\mathrm{E}_{3}{ }^{\text {Note6 }}$
86b	$\mathrm{V}_{\text {IC9H }}$					a	b		b	a				$\mathrm{E}_{3}^{\text {Note7 }}$

Notes: 1. For $V_{I C 1 L}, V_{I C 2 L}$ and $V^{1 C 3 L L}$, respectively read the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} voltage when their output amplitudes are 0.5 dB smaller than those of V_{1}, V_{2} and V_{3} in measuring $G_{1 A}$ in No. $9, G_{2 A}$ in No. 11 and $G_{3 A}$ in No. 13.
2. For $\mathrm{V}_{1 \mathrm{CIH}}, \mathrm{V}_{\mathrm{IC} 2 \mathrm{H}}$ and $\mathrm{V}_{\mathrm{IC3H}}$, respectively read the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} voltage when their output amplitudes are 0.5 $d B$ smaller than those of V_{1}, V_{2} and V_{3} in measuring G_{18} in No. $10, G_{28}$ in No. 12 and $G_{3 B}$ in No. 14.
3. Read the potential difference " V_{Os} " $=\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$, where V_{L} indicates output voltage when the control voltage is 0 V and V_{H} indicates output voltage when the control voltage is 5 V .
4. $\mathrm{Vcc}=5 \mathrm{~V}$.

For $\mathrm{V}_{\text {IC4L }}, \mathrm{V}_{\text {IC5L }}$ and $\mathrm{V}_{\text {ICGL }}$, respectively read the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} voltage when their output amplitudes are 1.0 dB smaller than those of V_{1}, V_{2} and V_{3} in measuring $G_{1 A}$ in No. $9, G_{2 A}$ in No. 11 and $G_{3 A}$ in No. 13.
5. $\mathrm{Vcc}=5 \mathrm{~V}$.

For $\mathrm{V}_{144 \mathrm{H}}, \mathrm{V}_{155 H}$ and $\mathrm{V}_{166 H}$, respectively read the $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} voltage when their output amplitudes are 1.0 dB smaller than those of V_{1}, V_{2} and V_{3} in measuring G_{18} in No. $10, G_{28}$ in No. 12 and G_{38} in No. 14.
6. Same as 4 above except $\mathrm{Vcc}=12 \mathrm{~V}$.
7. Same as 5 above except $\mathrm{Vcc}=12 \mathrm{~V}$.

Application Example

M52055P

USAGE NOTES

1. The input impedance is $20 \mathrm{k} \Omega$ (standard value).
2. Output drive current should be 5 mA or less when using this IC.
3. Note that voltage applied to the control pins (pins 2, 7 and 12) should be less than the power supply voltage (Vcc) and more than the ground voltage (GND). The following shows an internal equivalent circuit coupled to a control pin.

4. Output pins are the emitter follower type. The following drive current is applied inside the IC normally. If the drive performance is insufficient, apply external drive current within the range shown in 2.

Power supply voltage (Vcc)	Drive current in the IC (standard value)
5 V	$190 \mu \mathrm{~A}$
9 V	$380 \mu \mathrm{~A}$
12 V	$530 \mu \mathrm{~A}$

Package Dimensions

Rev.1.0, Sep.22.2003, page 13 of 13

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas They do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
iagrams, charts, programs, assumith nosporibit
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

