M61508FP

The Electric Volume of Build-in Non Fader Volume with Tone Control

Application

- This IC can be used Analog Signal processing of Power Amp. front stage
- This IC can be used Car Audio System, Home Audio System and TV.

Features

- This IC is unnecessary for outside putting CR by using SCF for Loudness and Tone Control.

Bass: +16 dB to $-12 \mathrm{~dB} / 2 \mathrm{~dB}$ step. $\mathrm{f} 0, \mathrm{Q}=$ variable. $\mathrm{f} 0=50 \mathrm{~Hz}, 80 \mathrm{~Hz}, 120 \mathrm{~Hz} \mathrm{Q}=1,1.25,1.5,2$
Mid: +12 dB to $-12 \mathrm{~dB} / 2 \mathrm{~dB}$ step. $\mathrm{f} 0, \mathrm{Q}=$ variable. $\mathrm{f} 0=700 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}, 10 \mathrm{kHz} \mathrm{Q}=1.5,2$
Treble: +12 dB to $-12 \mathrm{~dB} / 2 \mathrm{~dB}$ step. f0 $=$ variable. $\mathrm{f} 0=8 \mathrm{kHz}, 12 \mathrm{kHz}$
Loudness: $\mathrm{f0}=$ variable. $\mathrm{f0}=60 \mathrm{~Hz}, 80 \mathrm{~Hz}, 100 \mathrm{~Hz}$

- Build-in Non Fader Volume +12 dB to $-12 \mathrm{~dB} / 2 \mathrm{~dB}$ step, $-\infty \mathrm{dB}$
- Build-in Zero-Crossing Detector Circuit for Changing Noise Measure.
- Build-in Differential Input and Differential Output
- Build-in Input Selector (4 input + Differential Input)
- Build-in Input Gain Control 0 dB to $+18.75 \mathrm{~dB} / 1.25 \mathrm{~dB}$ step
- Build-in Master Volume and Fader Volume (Front, Rear)

Volume: 0 dB to $-83 \mathrm{~dB},-\infty \mathrm{dB} / 1 \mathrm{~dB}$ step
Fader: $0 \mathrm{~dB},-1 \mathrm{~dB},-2 \mathrm{~dB},-3 \mathrm{~dB},-4 \mathrm{~dB},-6 \mathrm{~dB},-8 \mathrm{~dB},-12 \mathrm{~dB},-16 \mathrm{~dB},-20 \mathrm{~dB},-30 \mathrm{~dB},-45 \mathrm{~dB},-60 \mathrm{~dB}$, $-\infty \mathrm{dB} / 16$ step

- Serial Data Control of 2 lines formula.

Recommended Operating Conditions

$$
\begin{aligned}
& \text { Supply voltage range... } \mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V} \text { to } 9 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
& \text { Rated supply voltage } \ldots \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}
\end{aligned}
$$

System Block Diagram

IC Internal Block Diagram

Pin Description

Pin No.	Symbol	Function
1	REF	Signal Ground of IC. Grounding about $10 \mu \mathrm{~F}$
2	DEFP IN1	Positive Input pin of Differential Amp.
3	DEFN IN1	Negative Input pin of Differential Amp.
4	INA1	Input pin of Channel 1 for Input Selector SW
5	INB1	
6	INC1	
7	IND1	
8	DEFN OUT1	Output pin (-) of Differential Amp.
9	SEL OUT1	Output pin of Input Selector
10	VOL IN1	Input pin of Volume1
11	TONE OUT1	Output pin of Tone
12	FADER IN1	Input pin of Volume2
13	REAR OUT1	Output pin of Fader Volume (rear)
14	FRONT OUT1	Output pin of Fader Volume (front)
15	Non Fader OUT1	Output pin of Non Fader Volume
16	GND	Ground Pin
17	DATA	Input pin of Control Data. It synchronized at CLOCK and inputted Data
18	N.C.	N.C. Pin
19	N.C.	N.C. Pin
20	CLOCK	Clock Input pin for Serial Data Transmission
21	$V_{\text {DD }}$	Digital Power Supply pin
22	Non Fader OUT2	Output pin of Non Fader Volume
23	FRONT OUT2	Output pin of Fader Volume (front)
24	REAR OUT2	Output pin of Fader Volume (rear)
25	FADER IN2	Input pin of Volume2
26	TONE OUT2	Output pin of Tone
27	VOL IN2	Input pin of Volume1
28	SEL OUT2	Output pin of Input Selector
29	DEFN OUT1	Output pin (-) of Differential Amp.
30	IND2	Input pin of Channel 2 for Input Selector SW
31	INC2	
32	INB2	
33	INA2	
34	DEFN IN1	Negative Input pin of Differential Amp.
35	DEFP IN1	Positive Input pin of Differential Amp.
36	Vcc	Analog Power Supply pin

Signal Communication Diagram (Channel 1 side only)

Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right.$, Input Gain/Volume/Tone/fader $=0 \mathrm{~dB}$, Loudness $=\mathrm{OFF}$, unless otherwise noted. $)$

Item	Symbol	Limits			Unit	Test Conditions
		Min	Typ	Max		
Circuit current	Icc	-	-	40	mA	No signal setting
Pass gain	Gv	-2	0	+2	dB	-
Volume maximum Attenuation quantity	$\mathrm{A}_{\text {TT }}$ (VOL)	-	-90	-80	dB	$\begin{aligned} & \mathrm{Vi}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz} \\ & \text { ATT (VOL) }=-\infty \mathrm{dB} \end{aligned}$
Crosstalk between Channels	$\Delta \mathrm{A}_{\text {TT }}(\mathrm{VOL})$	-2	0	+2	dB	ATT (VOL) $=0 \mathrm{~dB}$
Maximum input voltage	$\mathrm{V}_{\text {IM }}$	-	-	1.8	Vrms	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \text { DIN-AUDIO } \\ & \text { THD }=1 \% \end{aligned}$
Boost quantity (Bass)	G (Bass) B	13	16	19	dB	$\mathrm{f}=100 \mathrm{~Hz}$
Cut quantity (Bass)	G (Bass) C	-15	-12	-9	dB	$\mathrm{f}=100 \mathrm{~Hz}$
Boost quantity (Mid)	G (MID) B	9	12	15	dB	$\mathrm{f}=1 \mathrm{kHz}$
Cut quantity (Mid)	G (MID) C	-15	-12	-9	dB	$\mathrm{f}=1 \mathrm{kHz}$
Boost quantity (Treble)	G (Tre) B	9	12	15	dB	$\mathrm{f}=10 \mathrm{kHz}$
Cut quantity (Treble)	G (Tre) C	-15	-12	-9	dB	$\mathrm{f}=10 \mathrm{kHz}$
Fader maximum attenuation quantity	$\mathrm{A}_{\text {TT }}$ (FED)	-	-90	-80	dB	$\mathrm{Vi}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}$, DIN-AUDIO ATT (FED) $=-\infty \mathrm{dB}$
Maximum input voltage	Vom	1.8	-	-	Vrms	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \text { DIN-AUDIO } \\ & \text { THD }=1 \% \end{aligned}$
Output noise voltage	Vno 1	-	12	-	$\mu \mathrm{Vrms}$	Rg = 0, DIN-AUDIO
	Vno 2	-	5	-		Bypass setting Rg = 0, DIN-AUDIO
	Vno 3	-	3.5	-		ATT (VOL) $=-\infty \mathrm{dB}$ $\mathrm{Rg}=0$, DIN-AUDIO
Total harmonic distortion	THD	-	0.01	0.05	\%	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{0}=0.5 \mathrm{Vrms}$ BW : 400 Hz to 30 kHz
Channel separation	CS	-	-90	-75	dB	$\mathrm{f}=1 \mathrm{kHz}$, DIN-AUDIO
Input selector crosstalk	CT	-	-75	-60	dB	$\mathrm{f}=1 \mathrm{k} \mathrm{Hz}$, DIN-AUDIO
Loudness voltage gain	Gv (LOUD)	10	13	16	dB	Loudness ON, f=100 Hz VOL1 $=-30 \mathrm{~dB}$, VOL2 $=0 \mathrm{~dB}$ LOUD_VOL $=-20 \mathrm{~dB}$
Input gain control	Gv (GAIN)	15.75	18.75	21.75	dB	$\mathrm{Gv}(\mathrm{GAIN})=+18.75 \mathrm{~dB}$
Common mode rejection ratio	CMRR	15.75	50	21.75	dB	2, 3 pin/34, 35 pin Common mode signal input setting

Connection of Data and Clock

Digital Block Direct Current Characteristic

Item	Symbol	Limits			Unit	Test Conditions	
		Min	Typ	Max			
"L" Level Input Voltage	VIL	0	\sim	1.0	V	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ setting DATA, CLOCK Pin	
"H" Level Input Voltage	V_{IH}	4.0	\sim	5.0			
"L" Level Input Electric Current	$\mathrm{I}_{\text {IL }}$	-10	-	10	$\mu \mathrm{A}$	$\mathrm{V}=0 \mathrm{~V}$	DATA,CLOCK Pin
"H" Level Input Electric Current	I_{H}	-	-	10		$\mathrm{V}=5 \mathrm{~V}$	

Clock and Data Timing

Digital Block Alternating Current Characteristic

Item	Symbol	Limits			Unit
		Min	Typ	Max	
CLOCK Cycle Time	t_{cr}	4	-	-	$\mu \mathrm{s}$
CLOCK Pulse Width ("H" level)	$\mathrm{t}_{\text {whe }}$	1.6	-	-	
CLOCK Pulse Width ("L" level)	twLC	1.6	-	-	
CLOCK Rise Time	tr_{r}	-	-	0.4	
CLOCK Hall Time	t_{f}	-	-	0.4	
DATA Setup Time	$\mathrm{t}_{\text {SD }}$	0.8	-	-	
DATA Hold Time	$\mathrm{thD}^{\text {d }}$	0.8	-	-	

Data Input Format

D0	D1	D2	D3	D4	D5	D6	D7	D8	D9		1 D1		3D14			D17			D20	D21				D25			D28	D29	D30	D31	D32	D3	34
Volume 1 (CH1)							Volume 1 (CH2)						Input Selector			Input Gain Control				LOUDNESS				Timer Setting			0	0	0	0	0	0	0
Volume 2 (CH1)						Volume 2 (CH2)					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	1
	Bass			Bass		Bass			MID		Mid		0/1	TREBLE				0/1	0/1	Fader				0/1	Non Fader				Loudness		0/1	1	0

Volume 1 Code

ATTVA1	CH1	D0	D1	D2	D3	D4
	CH2	D7	D8	D9	D10	D11
0 dB	0	0	0	0	1	
-1 dB	1	1	1	1	0	
-2 dB	0	1	1	1	0	
-3 dB	1	0	1	1	0	
-4 dB	0	0	1	1	0	
-5 dB	1	1	0	1	0	
-6 dB	0	1	0	1	0	
-7 dB	1	0	0	1	0	
-8 dB	0	0	0	1	0	
-9 dB	1	1	1	0	0	
-10 dB	0	1	1	0	0	
-11 dB	1	0	1	0	0	
-12 dB	0	0	1	0	0	
-16 dB	1	1	0	0	0	
-20 dB	0	1	0	0	0	
-24 dB	1	0	0	0	0	
-28 dB	0	0	0	0	0	

	CH1	D5	D6
ATTVA2	CH2	D12	D13
0 dB	1	1	
-1 dB	0	1	
-2 dB	1	0	
-3 dB	0	0	

ATTVA2 fixed to 0dB when 0 dB to -12 dB setting.

Volume 2 Code

ATTVB1	CH1	D0	D1	D2
	D6	D7	D8	D9
0 dB	0	1	1	1
-2 dB	1	0	1	1
-4 dB	0	0	1	1
-6 dB	1	1	0	1
-8 dB	0	1	0	1
-10 dB	1	0	0	1
-12 dB	0	0	0	1
-14 dB	1	1	1	0
-16 dB	0	1	1	0
-24 dB	1	0	1	0
-32 dB	0	0	1	0
-40 dB	1	1	0	0
-48 dB	0	1	0	0
-56 dB	1	0	0	0
$-\infty \mathrm{dB}$	0	0	0	0

ATTVB2	CH1	D4	D5
	CH2	D10	D11
0 dB	1	1	
-2 dB	0	1	
-4 dB	1	0	
-6 dB	0	0	

ATTVB2 fixed to 0 dB
when 0 dB to -16 dB setting.

Timer Setting Code

Timer	D25	D26
5 ms	1	1
10 ms	0	1
15 ms	1	0
20 ms	0	0

Tone Code

Mid	D8	D9	D10	D11
Treble	D15	D16	D17	D18
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	$0 / 1$
-2 dB	1	0	0	1
-4 dB	0	1	0	1
-6 dB	1	1	0	1
-8 dB	0	0	1	1
-10 dB	1	0	1	1
-12 dB	0	1	1	1

Bass	D0	D1	D2	D3
16 dB	0	0	0	1
14 dB	1	1	1	0
12 dB	0	1	1	0
10 dB	1	0	1	0
8 dB	0	0	1	0
6 dB	1	1	0	0
4 dB	0	1	0	0
2 dB	1	0	0	0
0 dB	0	0	0	0
-2 dB	1	0	0	1
-4 dB	0	1	0	1
-6 dB	1	1	0	1
-8 dB	0	0	1	1
-10 dB	1	0	1	1
-12 dB	0	1	1	1

Loudness Volume Code

Loudness	D21	D22	D23	D24
-2 dB	1	1	1	1
-4 dB	0	1	1	1
-6 dB	1	0	1	1
-8 dB	0	0	1	1
-10 dB	1	1	0	1
-12 dB	0	1	0	1
-14 dB	1	0	0	1
-16 dB	0	0	0	1
-18 dB	1	1	1	0
-20 dB	0	1	1	0
-22 dB	1	0	1	0
-24 dB	0	0	1	0
-26 dB	1	1	0	0
-28 dB	0	1	0	0
-30 dB	1	0	0	0
$-\infty \mathrm{dB}$	0	0	0	0

Please refer to 21, 22 page for Loudness gain setting.

Loudness f0 Control

Loudness f0 Control	D30	D31
$\mathrm{f} 0=60 \mathrm{~Hz}$	1	1
$\mathrm{f} 0=80 \mathrm{~Hz}$	0	1
$\mathrm{f} 0=100 \mathrm{~Hz}$	1	0

Tone f0, Q Control Code

Bass f0 Control	D4	D5
$\mathrm{f} 0=50 \mathrm{~Hz}$	1	1
$\mathrm{f} 0=80 \mathrm{~Hz}$	0	1
$\mathrm{f} 0=120 \mathrm{~Hz}$	1	0

Mid f0 Control	D12	D13
$\mathrm{fO}=700 \mathrm{~Hz}$	1	1
$\mathrm{f0}=1 \mathrm{kHz}$	0	1
$\mathrm{fO}=2 \mathrm{kHz}$	1	0
$\mathrm{f0}=10 \mathrm{kHz}$	0	0

Treble f0 Control	D19
$\mathrm{f0}=8 \mathrm{kHz}$	1
$\mathrm{f} 0=12 \mathrm{kHz}$	0

Bass Q Control	D6	D7
$Q=2$	1	1
$Q=1.5$	0	1
$Q=1.25$	1	0
$Q=1$	0	0

Mid Q Control	D14
$\mathrm{Q}=1.5$	1
$\mathrm{Q}=2$	0

Selector Code

Selector	D14	D15	D16
INA	0	0	1
INB	1	1	0
INC	0	1	0
IND	1	0	0
Differential Input	0	0	0

Non Fader Code

ATT	D26	D27	D28	D29
+12 dB	1	0	1	1
+10 dB	0	0	1	1
+8 dB	1	1	0	1
+6 dB	0	1	0	1
+4 dB	1	0	0	1
+2 dB	0	0	0	1
0 dB	1	1	1	0
-2 dB	0	1	1	0
-4 dB	1	0	1	0
-6 dB	0	0	1	0
-8 dB	1	1	0	0
-10 dB	0	1	0	0
-12 dB	1	0	0	0
$-\infty \mathrm{dB}$	0	0	0	0

Input Gain Control Code

Input Gain Control	D17	D18	D19	D20
0 dB	1	1	1	1
1.25 dB	0	1	1	1
2.50 dB	1	0	1	1
3.75 dB	0	0	1	1
5.00 dB	1	1	0	1
6.25 dB	0	1	0	1
7.50 dB	1	0	0	1
8.75 dB	0	0	0	1
10.00 dB	1	1	1	0
11.25 dB	0	1	1	0
12.50 dB	1	0	1	0
13.75 dB	0	0	1	0
15.00 dB	1	1	0	0
16.25 dB	0	1	0	0
17.50 dB	1	0	0	0
18.75 dB	0	0	0	0

Fader Code

Fader	D21	D22	D23	D24
0 dB	1	1	1	1
-1 dB	0	1	1	1
-2 dB	1	0	1	1
-3 dB	0	0	1	1
-4 dB	1	1	0	1
-6 dB	0	1	0	1
-8 dB	1	0	0	1
-10 dB	0	0	0	1
-12 dB	1	1	1	0
-14 dB	0	1	1	0
-16 dB	1	0	1	0
-20 dB	0	0	1	0
-30 dB	1	1	0	0
-45 dB	0	1	0	0
-60 dB	1	0	0	0
$-\infty \mathrm{dB}$	0	0	0	0

Loudness, Tone Control Frequency Characteristic

Figure 1 Loudness Frequency Characteristic

Figure 2 Loudness Frequency Characteristic (VOL =-30 dB, Loudness = -20 dB, $\mathrm{f0}=$ Variable)

Figure 3 Bass Frequency Characteristic ($\mathrm{f0}=50 \mathrm{~Hz}, \mathrm{Q}=2$, $\mathbf{G v}=$ Variable)

Figure 4 Bass Frequency Characteristic ($\mathrm{Gv}=+16 \mathrm{~dB}, \mathrm{fO}=$ Variable, $\mathrm{Q}=2$)

Figure 5 Bass Frequency Characteristic (Gv=+16 dB, Q = Variable, f0 = 50 Hz)

Figure 6 Mid Frequency Characteristic ($\mathrm{fO}=1 \mathrm{kHz}, \mathrm{Q}=\mathbf{2}, \mathrm{Gv}=$ Variable)

Figure 7 Mid Frequency Characteristic ($\mathrm{Gv}=+12 \mathrm{~dB}, \mathrm{Q}=2, \mathrm{fO}=$ Variable)

Figure 8 Mid Frequency Characteristic ($\mathrm{Gv}=+\mathbf{1 2} \mathrm{dB}, \mathrm{f0}=1 \mathrm{kHz}, \mathrm{Q}=$ Variable)

Figure 9 Treble Frequency Characteristic (Gv = Variable)

Figure 10 Treble Frequency Characteristic ($\mathrm{Gv}=\boldsymbol{+ 1 2 \mathrm { dB } , \mathrm { f0 } = \text { Variable) }) ~}$

Zero-Crossing Detection Circuit

1. Meaning of Zero-Crossing Detection Circuit

In the conventional Serial Data Control Type Volume, Analog SW inside switches over simultaneously with Latch Condition Detector. And the operation completes.

In this case the changing noise occurs at the time of Latch Condition Detector, the Analog SW switches over (Zerocross Detector Strobe occurs) in the moment that the Analog Signal cross Signal Ground ($1 / 2 \mathrm{~V}_{\mathrm{CC}}$).

Other, In the case of Audio Signal isn't inputted (No signal), even if only Zero-cross Detector Circuit detects Latch Condition, Analog SW doesn't switch over for the Audio Signal never cuts Signal Ground ($1 / 2 \mathrm{~V}_{\mathrm{CC}}$).

The Time Function switches the Analog SW after some time T.
The Timer Time can setting with the Serial Data of $5 \mathrm{~ms}, 10 \mathrm{~ms}, 15 \mathrm{~ms}, 20 \mathrm{~ms}$.

2. Connection of Zero-Crossing Detector and Timer Setting

"OR" of [Zero-cross Detector Strobe] or [Compulsion SW of Timer Circuit] moves Internal Analog SW. When for example, suppose that it set to $\mathrm{T}=10 \mathrm{~ms}$.

In case of Pattern 1, the Zero-cross Detector Strobe occurs with the Zero-cross Detector Function, and SW is switched. But in case of Pattern 2, the Timer Function switches the Analog SW after T = 10 ms , for the Audio Input Signal didn't cut the Signal Ground after $\mathrm{T}=10 \mathrm{~ms}$ which were set with the timer.

Timer Setting Time setting for Frequency band of Input Audio Signal.

3. Timer Setting System

The Timer Setting Time T makes $\mathrm{T}=20 \mathrm{~ms}$ (Zero-cross detect of 25 Hz is 100%) maximum and it is setting by it.

4. Connection of Data Transmission and Timer Setting

M61508FP has the function to make the Serial Data invalid until it generation the Zero-cross Detector Strobe in IC, after the Latch Condition detected.

* In case of upper figurative. The order of DATA "B" is invalid.

In to make the Serial Data Transmission Interval IT from MCU (microcomputer) to M61508FP

$$
\text { Serial Data Transmission Interval }=\mathrm{IT}>\text { Timer Setting }=\mathrm{T}
$$

the reading error of the data doesn't occur.

* Serial Data Transmission Interval IT = Interval of between Latch Condition and Latch Condition

The Others

1. Differential Amp.

The lower fig. is Equalizing Circuit, Output Signal/Output Voltage of each point.

Differential Amp. Gain Calculation Formula

2. Loudness Gain Setting

Lower Figure is Structure of Loudness Circuit.

LOUDNESS VOLUME

Output Voltage (VOUT) of Setting Structure of Upper Figure

It is noted as Volume 1 Output Voltage $=$ V1, Loudness Filter Output Voltage $=$ V2, VOUT and Gv (Boost quantity) is given at the lower formula

$$
\begin{aligned}
& \text { VOUT }=\mathrm{V} 1+\mathrm{V} 2(\mathrm{Vrms}) \\
& \mathrm{Gv}=20 \log \frac{(\mathrm{~V} 1+\mathrm{V} 2)}{\mathrm{VIN}}-(\text { Volume } 1 \text { attenuation quantity })(\mathrm{dB})
\end{aligned}
$$

ex.) $\mathrm{VIN}=1 \mathrm{Vrms} / 60 \mathrm{~Hz}$, Volume1 $=-30 \mathrm{~dB}$,
Output Volutage and Boost Quantity of 60 Hz of Loudness Volume $=-20 \mathrm{~dB}$ setting

From: Volume1, Loudness Volume attenuation quantity
Become: V1 $=31.6 \mathrm{mVrms}$

$$
\mathrm{V} 2=100 \mathrm{mV} \mathrm{rms}
$$

If the sub situdes the equation for the upper formula, the following equation is given,

$$
\begin{aligned}
\text { VOUT } & =31.6 \mathrm{~m}+100 \mathrm{~m} \\
& =131.6 \mathrm{mVrms} \\
\mathrm{Gv} & =20 \log \frac{(31.6 \mathrm{~m}+100 \mathrm{~m})}{1}-(-30 \mathrm{~dB}) \\
& =12.4 \mathrm{~dB} \text { is obtained }
\end{aligned}
$$

In the item, the Loudness Gain Setting example is shown, when Volume 1 fixation and doing the Loudness Volume variably. Please refer to Plan.

Loudness Gain Setting Example

1. Volume $1=-10 \mathrm{~dB}$

Loudness Volume	Loudness Gain
-2 dB	10.9 dB
-4 dB	9.5 dB
-6 dB	8.2 dB
-8 dB	7.1 dB
-10 dB	6.0 dB
-12 dB	5.1 dB
-14 dB	4.2 dB
-16 dB	3.5 dB
-18 dB	2.9 dB
-20 dB	2.4 dB
-22 dB	1.9 dB
-24 dB	1.6 dB
-26 dB	1.3 dB
-28 dB	1.0 dB
-30 dB	0.8 dB
$-\infty \mathrm{dB}$	0 dB

2. Volume $1=-20 \mathrm{~dB}$

Loudness Volume	Loudnes s Gain
-2 dB	19.0 dB
-4 dB	17.3 dB
-6 dB	15.6 dB
-8 dB	13.9 dB
-10 dB	12.4 dB
-12 dB	10.9 dB
-14 dB	9.5 dB
-16 dB	8.2 dB
-18 dB	7.1 dB
-20 dB	6.0 dB
-22 dB	5.1 dB
-24 dB	4.2 dB
-26 dB	3.5 dB
-28 dB	2.9 dB
-30 dB	2.4 dB
$-\infty \mathrm{dB}$	0 dB

3. Volume $1=\mathbf{- 3 0 d B}$

Loudness Volume	Loudness Gain
-2 dB	28.3 dB
-4 dB	26.4 dB
-6 dB	24.5 dB
-8 dB	22.7 dB
-10 dB	20.8 dB
-12 dB	19.0 dB
-14 dB	17.3 dB
-16 dB	15.6 dB
-18 dB	13.9 dB
-20 dB	12.4 dB
-22 dB	10.9 dB
-24 dB	9.5 dB
-26 dB	8.2 dB
-28 dB	7.1 dB
-30 dB	6.0 dB
$-\infty \mathrm{dB}$	0 dB

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time o publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein
. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

