

No. 4326

LC3664BL, BML-70/85/10/12

64 K (8192 words x 8 bits) SRAM

Overview

The LC3664BL, BML-70/85/10/12 are fully asynchronous silicon gate CMOS static RAMs with an 8192 words x 8 bits.

This series has CE1 and CE2 chip enable pins for device select/nonselect control and an OE output enable pin for output control, and features high speed as well as low power dissipation.

For these reasons, the series is especially suited for use in systems requiring high speed, low power, and battery backup, and it is easy to expand memory capacity.

Features

Access time

70 ns (max.) : LC3664BL-70, LC3664BML-70 85 ns (max.) : LC3664BL-85, LC3664BML-85 100 ns (max.) : LC3664BL-10, LC3664BML-10 120 ns (max.) : LC3664BL-12, LC3664BML-12

· Low current dissipation

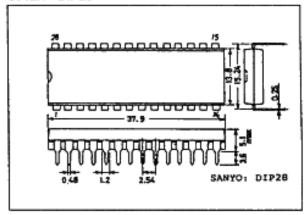
During standby

0.5 μA (max.) /Ta = 25°C 1 μA (max.) /Ta = 0 to 40°C 6 μA (max.) /Ta = 0 to 70°C

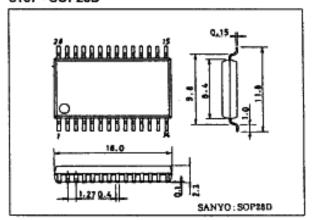
During data retention

0.2 μA (max.) /Ta = 25°C 0.5 μA (max.) /Ta = 0 to 40°C 2.5 μA (max.) /Ta = 0 to 70°C

During operation (DC) 10 mA (max.)


- . Single 5 V power supply: 5 V ±10%
- Data retention power supply voltage: 2.0 to 5.5 V
- No clock required (Fully static memory)
- · All input/output levels are TTL compatible
- · Common input/output pins, with three output states
- Packages

DIP 28-pin plastic package (600 mil) : LC3664BL SOP 28-pin plastic package (450 mil) : LC3664BML


Package Dimensions

unit : mm

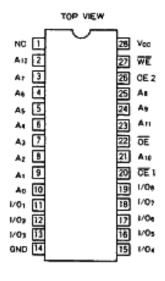
3012A - DIP28

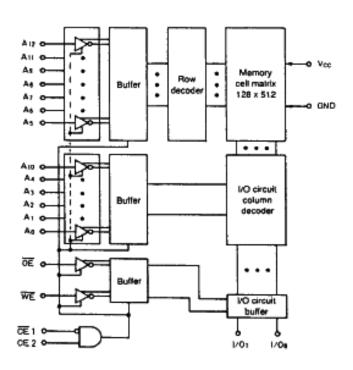
3187 - SOP28D

Information (including circuit diagrams and circuit parameters) herein is for exemple only: it is not guaranteed for volume production.

SANTO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Specifications and information heren are subject to change without notice.


SANYO Electric Co., Ltd. Semiconductor Business Headquarters


TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ko, TOKYO JAPAN

21593JN No. 4326-1/7

Pin Assignment

Block Diagram

: Address input

A0 10 A12 WE : Read/write control input OE : Output enable input CE1, CE2 : Chip enable input I/O1 to I/Os : Data input/output

Vcc, GND : Power supply pins

Functions

Mode	CE 1	CE 2	ŌE	WE	VO	Supply current
Read cycle	L	н	L	н	Data output	ICCA
Write cycle	L	н	×	L	Data input	ICCA
Output disable	L	н	н	н	High impedance	ICCA
Managhan	н	×	×	×	High impedance	lccs
Nonselect	X	L	X	х	High impedance	locs

X: H or L

Specifications

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Condition	Rating	unit
Maximum supply voltage	Vcc max		7.0	٧
Input pin voltage	Vin		-0.5* to Vcc+0.5	٧
I/O pin voltage	Vvo		-0.5* to Vcc+0.5	٧
Allowable power dissipation	Pd max	LC3664BL	1.0	w
		LC3664BML	0.7	w
Operating temperature range	Торд		0 to 70	ů
Storage temperature range	Tstg		-55 to +150	ů

^{* -3.0} V when pulse width is less than 50 ns

DC Allowable Operating Ranges at Ta = 0 to 70°C

Parameter	Symbol	min	typ	max	unit
Power supply voltage	Voc	4.5	5.0	5.5	v
input "H" level voltage	ViH	2.2		Vcc+0.3	٧
Input "L" level voltage	VIL	-0.3*		+0.8	٧

^{* -3.0} V when pulse width is less than 50 ns

DC Electrical Characteristics at Ta = 0 to 70°C, $V_{CC} = 5 \text{ V} \pm 10\%$

Parameter	Symbol	Condition			min	typ*	max	unit
Input leakage current	ĮU.	ViN = 0 to Voc			-0.5		+0.5	μА
I/O leakage current	ILO	VCE1 = VIH or VCE2 = VI or VWE = VIL, VIVO = 0 to		Ē = VIH	-0.5		+0.5	μА
Output "H" level voltage	Vон	IOH = -1.0mA			2.4			V
Output "L" level voltage	VoL	IOL = 2.1mA					0.4	v
Operating supply current (DC)	ICCA1	Vč€1≤0.2V, Vc∈2≥Vcc or Vin≥Vcc-0.2V, luo	Vin≦0.2V		1	5	mA	
	ICCA2	VCE1 = VIL, VCE2 = VIH, VIN = VIH or VIL	ıA,		3	10	mA	
Average operating	ICCAS	VČE1 = VIL, VCE2 = VIH, IVO = 0mA, min cycle		70ns		30	50	
supply current			Access	85ns		25	50	mA.
		time	100ns		23	50	1	
				120ns		20	50	1
Standby supply	locs1	{Vcez≦0.2V}		0 to 70°C		0.2	6	
current		or {Vce1≧Vcc-0.2V, (Vce -0.2V or Vce2≤0.2V)}	₂≧Vcc	0 to 40°C			1	μА
		-0.2V or VCE250.2V))					0.5	1
	Iccs2	VCE2 = VIL or VCE1 = VIH		0.4	2	mΛ		

^{*} Reference values at VCC = 5 V, Ta = 25°C

Input/Output Capacitance at Ta = 25°C, f = 1 MHz

Parameter	Symbol	Condition	min	typ	max	unit
Input/output capacitance	Cvo	Vvo = 0V			8	ρF
Input capacitance	CIN	VIN = OV			6	pF

Note: These parameters were obtained through sampling, and not full-lot measurement.

AC Electrical Characteristics at Ta = 0 to 70° C, $VCC = 5 \text{ V} \pm 10\%$

AC testing conditions

Input pulse voltage level : 0.8 V, 2.2 V

Input rise and fall time : 5 ns

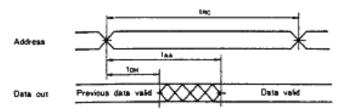
Input - output timing level : 1.5 V

Output load

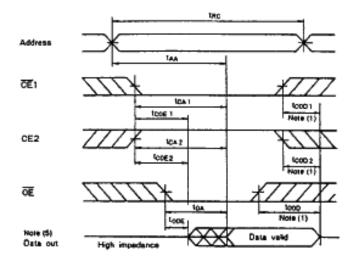
: I TTL gate + CL = 100 pF (85 ns/100 ns/120 ns)

1 TTL gate + CL = 30 pF (70 ns) (including scope and jig capacitance)

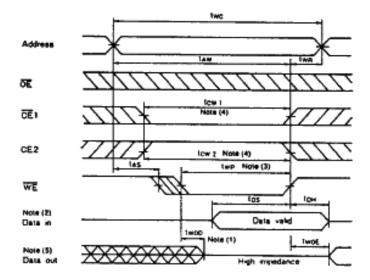
Read Cycle


Parameter	Symbol	LC3664BL-70 LC3664BML-70		LC3664BL-85 LC3664BML-85		LC3664BL-10 LC3664BML-10		LC3664BL-12 LC3664BML-12		unit
		min	max	min	max	min	max	min	max	1
Read cycle time	tRC	70		85		100		120		ns
Address access time	taa		70		85		100		120	ns
CE1 access time	ICA1		70		85		100		120	ns
CE2 access time	ICA2		70		85		100		120	ns
OE access time	toA		35		45		50		60	ns
Output hold time	10н	20		20		20		20		ns
CE1 output enable time	1COE1	10		10		10		10		ns
CE2 output enable time	1COE2	10		10		10		10		пŝ
OE output enable time	tooe	5		5		5		5		ns
CE1 output disable time		0	30	0	30	0	30	0	30	ns
CE2 output disable time	1COD2	0	30	0	30	0	30	0	30	ns
OE output disable time	t000	0	30	0	30	0	30	0	30	ns

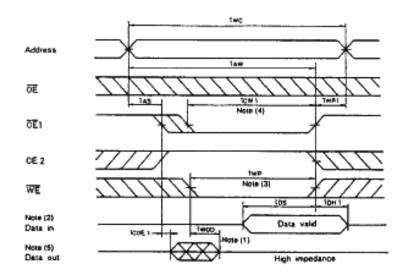
Write Cycle


Parameter	Symbol	LC3664BL-70 LC3664BML-70		LC3664BL-85 LC3664BML-85		LC3664BL-10 LC3664BML-10		LC3664BL-12 LC3664BML-12		unit
		min	max	min	max	min	max	min	max	
Write cycle time	two	70		85		100		120		กร
Address valid to end of write	taw	60		60		75		85		กร
Address setup time	tas	0		0		0		0		ns
Write pulse width	twp	50		50		. 60		70		ns
CE1 setup time	1CW1	60		60		75		85		ns
CE2 setup time	lcw2	60		60		75		85		ns
Write recovery time	twn	0	[·	0		0		0		ns
CE1 Write recovery time	twa1	0		0		0		. 0		ns
CE2 Write recovery time	twn2	0		0		0		0		ns
Data setup time	IDS	30		30		35		40		ns
Data hold time	ton.	0		0		0		0		ns
CE1 Data hold time	tDH1			0		0		0		ns
CE2 Data hold time	1DH2	0		0		. 0		0		ns
WE output enable time	twoe	10		10		10		10		ns
WE output disable time		0	25	0	25	0	25	0	25	ns

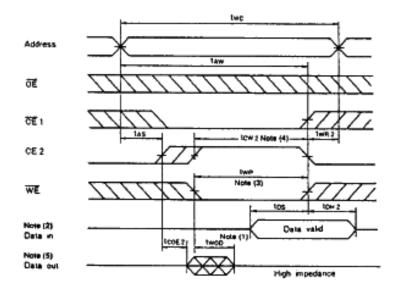
Timing Charts


• Read Cycle (1): $\overline{CE}1 = \overline{OE} = VIL, CE2 = VIH, \overline{WE} = VIH$

• Read Cycle (2): WE = VIH



Write Cycle (1): WE Control Note (6)



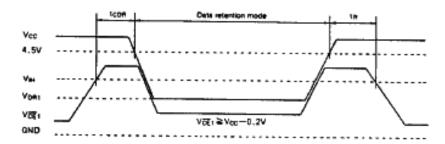
5

• Write Cycle (2): TE1 Control Note (6)

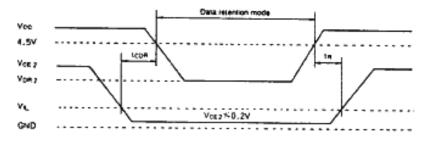
• Write Cycle (3): CE2 Control Note (6)

C

Notes


- t_{COD1}, t_{COD2}, t_{OOD}, and t_{WOD} are defined as the time at which the outputs becomes the high impedance state and are not referred to output voltage levels.
- (2) An external antiphase signal must not be applied when DOUT is in the output state.
- (3) two is the time interval that CE1 and WE are low-level and CE2 is high-level, and is defined as the interval from the falling of WE to the rising of CE1 or WE, or the falling of CE2, whichever is earlier.
- (4) t_{CW1} and t_{CW2} are the time interval that CE1 and WE are low-level and CE2 is high-level, and is defined as the time from the falling of CE1 or the rising of CE2 to the rising of CE1 or WE, or the falling of CE2, whichever is earlier.
- (5) DOUT goes to the high-impedance state when either OE is high-level, CE1 is high-level, CE2 is low-level, or WE is low-level.
- (6) When OE is high-level during the write cycle, DOUT goes to the high-impedance state.

Data Retention Characteristics at Ta = 0 to 70°C


Parameter	Symbol	Condition		min	typ	max	unit	
Data retention supply voltage	V _{DR1}	V _{DR1} V _{CE2} V _{CC} -0.2V, V _{CE2} ≥ V _{CC} -0.2V or V _{CE2} ≤ 0.2V		2.0		5.5	٧	
	V _{DR2}	V _{CE2} ≤0.2V	2.0		5.5	v		
Data retention supply current	I _{CCDR1}	V _{CC} = 3.0V	0 to 70°C			2.5		
		V _{CE1} ≥V _{CC} -0.2V,	0 to 40°C			0.5	μА	
<u> </u>		V _{CE2} ≥V _{CC} =0.2V or V _{CE2} ≤0.2V	25°C			0.2		
	I _{CCDR2}	V _{CC} = 3.0V,	0 to 70°C			2.5		
		V _{CE2} ≦0.2V	0 to 40°C			0.5	μA	
			25°C			0.2		
Chip enable setup time	_tcpr			0			ns	
Chip enable hold time	t _B			tec*			ns	

^{*} tRC = Read Cycle time

Data Retention Waveform (1) (CE1 control)

Data Retention Waveform (2) (CE2 control)

ŋ