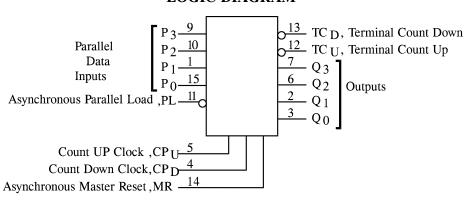

IN74ACT192

Presettable BCD/Decade UP/DOWN Counter High-Speed Silicon-Gate CMOS

The IN74ACT192 is identical in pinout to the LS/ALS192, HC/HCT192. The IN74ACT192 may be used as a level converter for interfacing TTL or NMOS outputs to High Speed CMOS inputs.


The counter has two separate clock inputs, a Count Up Clock and Count Down Clock inputs. The direction of counting is determined by which input is clocked. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs. This counter may be preset by entering the desired data on the P0, P1, P2, P3 input. When the Parallel Load input is taken low the data is loaded independently of either clock input. This feature allows the counters to be used as devide-by-n by modifying the count lenght with the preset inputs. In addition the counter can also be cleared. This is accomplished by inputting a high on the Master Reset input. All 4 internal stages are set to low independently of either clock input.Both a Terminal Count Down (TCD) and Terminal Count Up (TCU) Outputs are provided to enable cascading of both up and down counting functions. The TC_D output produces a negative going pulse when the counter underflows and TCu outputs a pulse when the counter overflows. The counter can be cascaded by connecting the TCU and TCD outputs of one device to the Count Up Clock and Count Down Clock inputs, respectively, of the next device.

- TTL/NMOS Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1.0 μA; 0.1 μA @ 25°C
- Outputs Source/Sink 24 mA

PIN ASSIGNMENT

P ₁	1 •	16	v _{cc}
Q ₁ [2	15	P ₀
Q ₀ [3	14	MR
CPD	4	13	$\overline{\text{TC}}_D$
ср _U [5	12	$\overline{\tau c}_U$
Q ₂ [6	11	PL
Q ₃ [7	10	P_2
GND	8	9 🛛	P_3

PIN 16 = V_{CC} PIN 8 = GND

LOGIC DIAGRAM

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
Vin	DC Input Voltage (Referenced to GND)	-0.5 to Vcc +0.5	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to Vcc +0.5	V
Iin	DC Input Current, per Pin	±20	mA
Iout	DC Output Sink/Source Current, per Pin	±50	mA
Icc	DC Supply Current, Vcc and GND Pins	±50	mA
PD	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	750 500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions. +Derating - Plastic DIP: - 10 mW/°C from 65° to $125^{\circ}C$

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS							
Symbol	Parameter	Min	Max	Unit			
Vcc	DC Supply Voltage (Referenced to GND)	4.5	5.5	V			
VIN, VOUT	DC Input Voltage, Output Voltage (Referenced to GND)	0	Vcc	V			
Tı	Junction Temperature (PDIP)		140	°C			
Та	Operating Temperature, All Package Types		+85	°C			
Іон	Output Current - High		-24	mA			
Iol	Output Current - Low		24	mA			
tr, tf	Input Rise and Fall Time * $V_{CC} = 4.5 V$ (except Schmitt Inputs) $V_{CC} = 5.5 V$	0 0	10 8.0	ns/V			

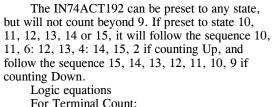
^{*}V_{IN} from 0.8 V to 2.0 V

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range GND \leq (V_{IN} or V_{OUT}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}).$ Unused outputs must be left open.

			Vcc	Guaranteed Limits		
Symbol	Parameter	Test Conditions	v	25 °C	-40°C to 85°C	Unit
VIH	Minimum High- Level Input Voltage	Vout=0.1 V or Vcc-0.1 V	4.5 5.5	2.0 2.0	2.0 2.0	V
VIL	Maximum Low - Level Input Voltage	Vout=0.1 V or Vcc-0.1 V	4.5 5.5	0.8 0.8	0.8 0.8	V
Vон	Minimum High- Level Output Voltage	Iout \leq -50 μ A	4.5 5.5	4.4 5.4	4.4 5.4	V
		$V_{IN} = V_{IH}$ or V_{IL} IoH = -24 mA IoH = -24 mA	4.5 5.5	3.86 4.86	3.76 4.76	
Vol	Maximum Low- Level Output Voltage	$I_{OUT} \leq 50 \ \mu A$	4.5 5.5	$\begin{array}{c} 0.1 \\ 0.1 \end{array}$	0.1 0.1	V
		$V_{IN} = V_{IH}$ IoL = 24 mA IoL = 24 mA	4.5 5.5	0.36 0.36	0.44 0.44	
IIN	Maximum Input Leakage Current	V _{IN} =V _{CC} or GND	5.5	±0.1	±1.0	μΑ
Iold	+Minimum Dynamic Output Current	Vold=1.65 V Max	5.5		75	mA
Іонд	+Minimum Dynamic Output Current	V _{OHD} =3.85 V Min	5.5		-75	mA
Icc	Maximum Quiescent Supply Current (per Package)	V _{IN} =V _{CC} or GND	5.5	8.0	80	μΑ

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)


*All outputs loaded; thresholds on input associated with output under test.

+Maximum test duration 2.0 ms, one output loaded at a time.

Inputs			Mode	
MR	PL	\mathbf{CP}_{U}	CPD	
Н	Х	Х	Х	Reset(Asyn.)
L	L	Х	Х	Preset(Asyn.)
L	Н	2	Н	No Count
L	Н	\langle	Н	Count Up
L	Н	Н	\langle	Count Down
L	Н	Н	2	No Count

FUNCTION TABLE

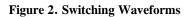
X = don't care

$$\frac{\text{FOF Ferminiar Count:}}{\text{TC}_{\text{U}}} = \underline{Q}_0 \bullet \underline{Q}_3 \bullet \underline{\text{CP}}_{\text{U}}$$
$$\frac{\text{TC}_{\text{D}}}{\text{TC}_{\text{D}}} = \overline{Q}_0 \bullet \overline{Q}_1 \bullet \overline{Q}_2 \bullet \overline{Q}_3 \bullet \overline{\text{CP}}_{\text{D}}$$

Downloaded from Elcodis.com electronic components distributor

			Guaranteed Limits			
Symbol	Parameter	25 °C		-40°C to 85°C		Unit
		Min	Max	Min	Max	
fmax	Maximum Clock Frequency (Figure 1)	100		80		MHz
t plh	Propagation Delay, CP_U or CP_D to $\overline{TC_U}$ or $\overline{TC_D}$ (Figure 2)		15		16.5	ns
t phl	Propagation Delay, CP_U or CP_D to $\overline{TC_U}$ or $\overline{TC_D}$ (Figure 2)		14		15.5	ns
t plh	Propagation Delay, CP _U or CP _D to Q _n (Figure 1)		12		13.5	ns
t phl	Propagation Delay, CP _U or CP _D to Q _n (Figure 1)		12		13.5	ns
t plh	Propagation Delay, P_n to Q_n (Figure 3)		12		13.5	ns
t phl	Propagation Delay, Pn to Qn (Figure 3)		12		13.5	ns
t plh	Propagation Delay, \overline{PL} to Q_n (Figure 4)		12		13.5	ns
t phl	Propagation Delay, \overline{PL} to Q_n (Figure 4)		15		16.5	ns
t phl	Propagation Delay, MR to Qn (Figure 5)		15		16.5	ns
t plh	Propagation Delay, MR to $\overline{\text{TC}}_{\text{U}}$ (Figure 6)		14		15.5	ns
t phl	Propagation Delay, MR to $\overline{\text{TC}}_{\text{D}}$ (Figure 6)		14		15.5	ns
t plh	Propagation Delay, \overline{PL} to $\overline{TC_U}$ or $\overline{TC_D}$ (Figure 6)		15		16.5	ns
tphl.	Propagation Delay, \overline{PL} to $\overline{TC_U}$ or $\overline{TC_D}$ (Figure 6)		11		12.5	ns
t plh	Propagation Delay, P_n to $\overline{TC_U}$ or $\overline{TC_D}$ (Figure 6)		15		16.5	ns
t phl	Propagation Delay, P_n to $\overline{TC_U}$ or $\overline{TC_D}$ (Figure 6)		15		16.5	ns
Cin	Maximum Input Capacitance	4.	4.5 4.5		pF	
		Typical @25°C,Vcc=5.0 V				
Cpd	Power Dissipation Capacitance	45		pF		

AC ELECTRICAL CHARACTERISTICS ($V_{CC}=5.0 \text{ V} \pm 10\%$, $C_L=50 \text{pF}$, Input $t_r=t_f=3.0 \text{ ns}$)



		Guarantee		
Symbol	Parameter	25 °C	-40°C to 85°C	Unit
tsu	Minimum Setup Time, P_n to \overline{PL} (Figure 7)	8	9	ns
th	Minimum Hold Time, \overline{PL} to P_n (Figure 7)	-1.0	-1.0	ns
tw	Minimum Pulse Width, PL (Figure 4)	14	15	ns
tw	Minimum Pulse Width, CP _U or CP _D (Figure 1)	10	11	ns
tw	Minimum Pulse Width, MR (Figure 5)	12	14	ns
trec	Minimum Recovery Time, \overline{PL} to CP_U or CP_D (Figure 5)	8	9	ns
trec	Minimum Recovery Time, MR to CP _U or CP _D (Figure 5)	14	16	ns

TIMING REQUIREMENTS(CL=50pF, Input tr=tf=3.0 ns, Vcc=5.0 V \pm 10%)

Figure 1. Switching Waveforms

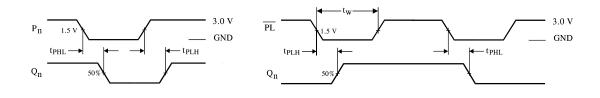


Figure 3. Switching Waveforms

Figure 4. Switching Waveforms

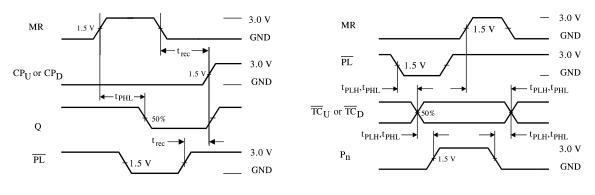
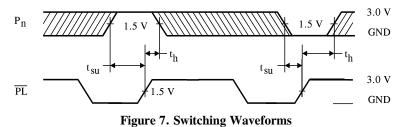
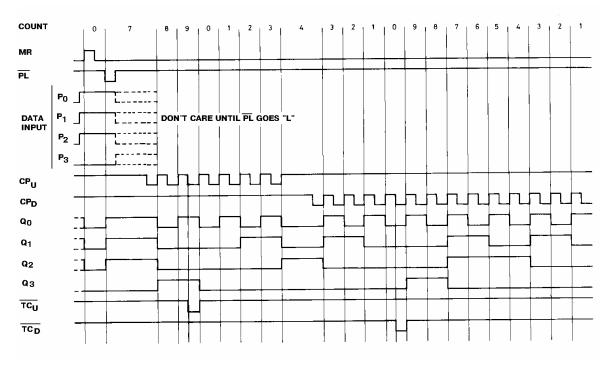
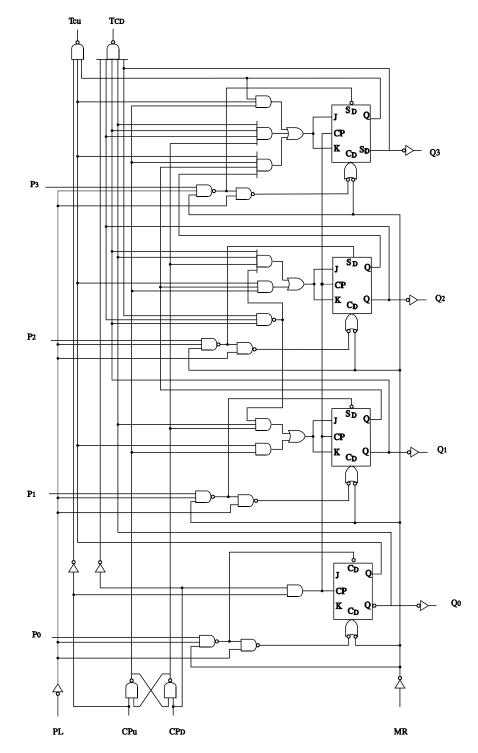




Figure 5. Switching Waveforms



TIMING DIAGRAM

EXPANDED LOGIC DIAGRAM

