TELECOMMUNICATION SYSTEM SECONDARY PROTECTION

Ion-Implanted Breakdown Region Precise and Stable Voltage Low Voltage Overshoot under Surge

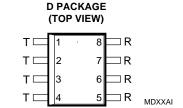
DEVICE	V _{DRM}	V _(BO)
DEVICE	٧	٧
'4240F3	180	240
'4260F3	200	260
'4290F3	220	290
'4320F3	240	320
'4380F3	270	380

Planar Passivated Junctions Low Off-State Current < 10 μA

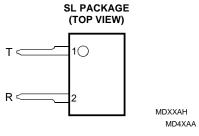
Rated for International Surge Wave Shapes

WAVE SHAPE	STANDARD	I _{TSP} A
2/10 µs	FCC Part 68	175
8/20 µs	ANSI C62.41	120
10/160 µs	FCC Part 68	60
10/560 µs	FCC Part 68	45
0.5/700 µs	RLM 88	38
	FTZ R12	50
10/700 µs	VDE 0433	50
	CCITT IX K17/K20	50
10/1000 μs	REA PE-60	35

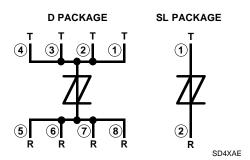
Surface Mount and Through-Hole Options


PACKAGE	PART # SUFFIX
Small-outline	D
Small-outline taped	DR
and reeled	DIX
Single-in-line	SL

• UL Recognized, E132482


description

These high voltage symmetrical transient voltage suppressor devices are designed to protect two wire telecommunication applications against transients caused by lightning strikes and a.c. power lines. Offered in five voltage variants to meet battery and protection requirements they are guaranteed to suppress and withstand the listed international lightning surges in both polarities.


Transients are initially clipped by breakdown clamping until the voltage rises to the breakover

Specified ratings require the connection of pins 1, 2, 3 and 4 for the T terminal.

device symbol

Terminals T and R correspond to the alternative line designators of A and B

level, which causes the device to crowbar. The high crowbar holding current prevents d.c. latchup as the current subsides.

These monolithic protection devices are fabricated in ion-implanted planar structures to ensure precise and matched breakover control and are virtually transparent to the system in normal operation

The small-outline 8-pin assignment has been carefully chosen for the TISP series to maximise the inter-pin clearance and creepage distances which are used by standards (e.g. IEC950) to establish voltage withstand ratings.

PRODUCT INFORMATION

Information is current as of publication date. Products conform to specifications in accordance with the terms of Power Innovations standard warranty. Production processing does not necessarily include testing of all parameters.

MARCH 1994 - REVISED SEPTEMBER 1997

absolute maximum ratings

RATING			VALUE	UNIT
	'4240F3		± 180	
	'4260F3		± 200	
Repetitive peak off-state voltage (0°C < T _J < 70°C)	'4290F3	V_{DRM}	± 220	V
	'4320F3		± 240	
	'4380F3		± 270	
Non-repetitive peak on-state pulse current (see Notes 1, 2 and 3)				
1/2 μs (Gas tube differential transient, open-circuit voltage wave shape 1	/2 µs)		350	
2/10 μs (FCC Part 68, open-circuit voltage wave shape 2/10 μs)			175	
8/20 μs (ANSI C62.41, open-circuit voltage wave shape 1.2/50 μs)			120	
10/160 μs (FCC Part 68, open-circuit voltage wave shape 10/160 μs)			60	
5/200 μs (VDE 0433, open-circuit voltage wave shape 2 kV, 10/700 μs)		I_{TSP}	50	Α
0.2/310 μs (RLM 88, open-circuit voltage wave shape 1.5 kV, 0.5/700 μs)		38	
5/310 µs (CCITT IX K17/K20, open-circuit voltage wave shape 2 kV, 10/1	700 µs)		50	
5/310 μs (FTZ R12, open-circuit voltage wave shape 2 kV, 10/700 μs)			50	
10/560 μs (FCC Part 68, open-circuit voltage wave shape 10/560 μs)			45	
10/1000 μs (REA PE-60, open-circuit voltage wave shape 10/1000 μs)			35	
Non-repetitive peak on-state current (see Notes 2 and 3)	D Package		4	Λ
50 Hz, 1 s	I _{TSM}	6	A rms	
Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value	di _T /dt	250	A/µs	
Junction temperature		TJ	-40 to +150	°C
Storage temperature range		T _{stg}	-40 to +150	°C

- NOTES: 1. Further details on surge wave shapes are contained in the Applications Information section.
 - 2. Initially the TISP must be in thermal equilibrium with 0°C < T_J <70°C. The surge may be repeated after the TISP returns to its initial conditions.
 - 3. Above 70°C, derate linearly to zero at 150°C lead temperature.

electrical characteristics for the T and R terminals, $T_J = 25$ °C

		PARAMETER TEST CONDITIONS				SP4240F3		TISP4260F3			
	PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
I _{DRM}	Repetitive peak off- state current	$V_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$				±10			±10	μΑ	
V _(BO)	Breakover voltage	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE}$	= 300 Ω			±240			±260	V	
V _(BO)	Impulse breakover voltage	$dv/dt = \pm 1000 \text{ V/μs}, R_{SOURCE} = 50 \Omega,$ di/dt < 20 A/μs			±267			±287		٧	
I _(BO)	Breakover current	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$		±0.15		±0.6	±0.15		±0.6	Α	
V _T	On-state voltage	$I_T = \pm 5 \text{ A}, t_W = 100 \mu\text{s}$				±3			±3	V	
I _H	Holding current	di/dt = +/-30 mA/ms		±0.15			±0.15			Α	
dv/dt	Critical rate of rise of off-state voltage	Linear voltage ramp Maximum ramp value < 0.85V ₍	BR)MIN	±5			±5			kV/μs	
I _D	Off-state current	$V_D = \pm 50 \text{ V}$				±10			±10	μA	
		f = 100 kHz, V _d = 100 mV	$V_{D} = 0,$		57	95		57	95	pF	
C _{off}	Off-state capacitance	(see Note 4)	$V_D = -5 \text{ V}$		26	45		26	45	pF	
	(See Note 4)	$V_{D} = -50 \text{ V}$		11	20		11	20	pF		

NOTE 4: Further details on capacitance are given in the Applications Information section.

MARCH 1994 - REVISED SEPTEMBER 1997

electrical characteristics for the T and R terminals, $T_J = 25$ °C

				TISP4290F3		TISP4320F3				
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off- state current	$V_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$				±10			±10	μΑ
V _(BO)	Breakover voltage	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} =$	300 Ω			±290			±320	V
V _(BO)	Impulse breakover voltage	$dv/dt = \pm 1000 \text{ V/}\mu\text{s}, R_{SOURCE} = di/dt < 20 \text{ A/}\mu\text{s}$	= 50 Ω,		±317			±347		V
I _(BO)	Breakover current	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} =$	300 Ω	±0.15		±0.6	±0.15		±0.6	Α
V _T	On-state voltage	$I_T = \pm 5 \text{ A}, t_W = 100 \mu\text{s}$				±3			±3	V
I _H	Holding current	di/dt = +/-30 mA/ms		±0.15			±0.15			
dv/dt	Critical rate of rise of off-state voltage	Linear voltage ramp Maximum ramp value < 0.85V _{(BF}	R)MIN	±5			±5			kV/µs
I _D	Off-state current	$V_D = \pm 50 \text{ V}$				±10			±10	μA
C _{off}	Off-state capacitance	f = 100 kHz, V _d = 100 mV (see Note 5)	$V_D = 0,$ $V_D = -5 \text{ V}$ $V_D = -50 \text{ V}$		57 26 11	95 45 20		57 26 11	95 45 20	pF pF pF

NOTE 5: Further details on capacitance are given in the Applications Information section.

electrical characteristics for the T and R terminals, $T_J = 25$ °C

PARAMETER	R TEST CONDITIONS		TISP4380F3			UNIT
PANAMETER			MIN	TYP	MAX	ONII
Repetitive peak off- state current	$V_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$				±10	μА
Breakover voltage	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$				±380	V
Impulse breakover voltage	$dv/dt = \pm 1000 \text{ V/}\mu\text{s}, R_{SOURCE} = 50 \ \Omega,$ $di/dt < 20 \ A/\mu\text{s}$			±407		V
Breakover current	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$		±0.15		±0.6	Α
On-state voltage	$I_T = \pm 5 \text{ A}, t_W = 100 \ \mu \text{s}$				±3	V
Holding current	di/dt = +/-30 mA/ms		±0.15			Α
Critical rate of rise of off-state voltage	Linear voltage ramp Maximum ramp value < 0.85V _{(BR)MIN}		±5			kV/μs
Off-state current	$V_D = \pm 50 \text{ V}$				±10	μA
Off-state capacitance	$f = 100 \text{ kHz}, V_d = 100 \text{ mV}$ (see Note 6)	$V_D = 0,$ $V_D = -5 V$		57 26	95 45 20	pF pF pF
	Repetitive peak off- state current Breakover voltage Impulse breakover volt- age Breakover current On-state voltage Holding current Critical rate of rise of off-state voltage Off-state current	Repetitive peak off-state current $V_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ Breakover voltage $dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$ Impulse breakover voltage $dv/dt = \pm 1000 V/\mu \text{s}, R_{SOURCE} = 50 \Omega,$ $di/dt < 20 A/\mu \text{s}$ Breakover current $dv/dt = \pm 250 V/m \text{s}, R_{SOURCE} = 300 \Omega$ On-state voltage $I_T = \pm 5 A, t_W = 100 \mu \text{s}$ Holding current $di/dt = \pm 100 \mu \text{s}$ Critical rate of rise of off-state voltage $I_T = \pm 5 A, t_W = 100 \mu \text{s}$ Off-state voltage $I_T = \pm 50 V$ I_T	Repetitive peak off-state current $V_D = \pm V_{DRM}, \ 0^{\circ}C < T_J < 70^{\circ}C$ Breakover voltage $dv/dt = \pm 250 \ V/ms, R_{SOURCE} = 300 \ \Omega$ Impulse breakover voltage $dv/dt = \pm 1000 \ V/\mu s, R_{SOURCE} = 50 \ \Omega,$ $di/dt < 20 \ A/\mu s$ Breakover current $dv/dt = \pm 250 \ V/ms, R_{SOURCE} = 300 \ \Omega$ On-state voltage $I_T = \pm 5 \ A, I_W = 100 \ \mu s$ Holding current $di/dt = +/-30 \ mA/ms$ Critical rate of rise of off-state voltage $I_T = \pm 5 \ A, I_W = 100 \ \mu s$ Off-state current $V_D = \pm 50 \ V$ Off-state current $V_D = \pm 50 \ V$ Off-state capacitance $I_T = -100 \ kHz, V_d = 100 \ mV$ $V_D = -5 \ V_D = -5 \ $	Repetitive peak off-state current $V_D = \pm V_{DRM}, \ 0^{\circ}C < T_J < 70^{\circ}C$ Breakover voltage $dv/dt = \pm 250 \ V/ms, R_{SOURCE} = 300 \ \Omega$ Impulse breakover voltage $dv/dt = \pm 1000 \ V/\mu s, R_{SOURCE} = 50 \ \Omega,$ $di/dt < 20 \ A/\mu s$ Breakover current $dv/dt = \pm 250 \ V/ms, R_{SOURCE} = 300 \ \Omega$ $Dr-state voltage \qquad I_T = \pm 5 \ A, t_W = 100 \ \mu s$ $Holding current \qquad di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of off-state voltage $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of off-state voltage $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ Critical rate of rise of $di/dt = +/-30 \ mA/ms \qquad \qquad \pm 0.15$ $di/dt = +/-30 \ mA/ms$	Repetitive peak off-state current $V_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_{DRM}, 0^{\circ}C < T_J < 70^{\circ}C$ $U_D = \pm V_D$ $U_D = V_D$ $V_D = V_D$ $U_D = V_D$ U_D	Repetitive peak off-state current $V_D = \pm V_{DRM}$, $0^{\circ}C < T_J < 70^{\circ}C$ ± 10 Breakover voltage $dv/dt = \pm 250 \text{ V/ms}$, $R_{SOURCE} = 300 \Omega$ ± 380 Impulse breakover voltage $dv/dt = \pm 1000 \text{ V/µs}$, $R_{SOURCE} = 50 \Omega$, $di/dt < 20 \text{ A/µs}$ Breakover current $dv/dt = \pm 250 \text{ V/ms}$, $R_{SOURCE} = 300 \Omega$ ± 0.15 ± 0.6 On-state voltage $I_T = \pm 5 \text{ A}$, $I_W = 100 \text{ µs}$ ± 3 Holding current $di/dt = +/-30 \text{ mA/ms}$ ± 0.15 ± 0.6 Critical rate of rise of off-state voltage $dv/dt = \pm 100 \text{ V/D}$ $dv/dt = \pm 100 \text{ V/D}$ $dv/dt = \pm 100 \text{ M/D}$ Off-state current $dv/dt = \pm 100 \text{ M/D}$ $dv/dt = $

NOTE 6: Further details on capacitance are given in the Applications Information section.

thermal characteristics

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
R	Junction to free air thermal resistance	$P_{tot} = 0.8 \text{ W}, T_A = 25^{\circ}\text{C}$	D Package			160	°C/W
R _{θJA}	direction to free all thermal resistance	5 cm ² , FR4 PCB	SL Package			105	0, 11

PARAMETER MEASUREMENT INFORMATION

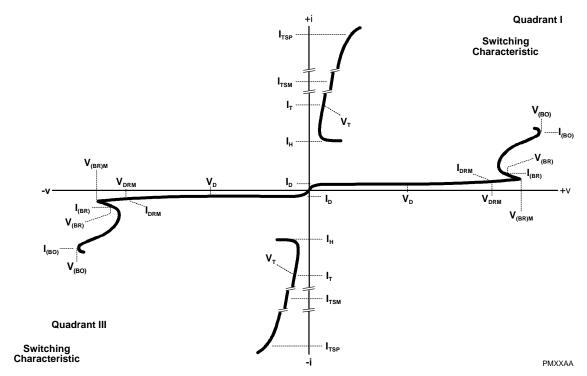
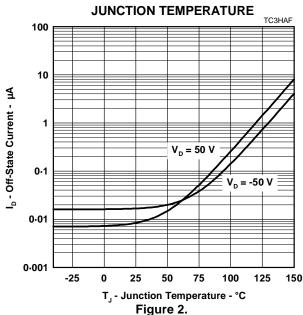
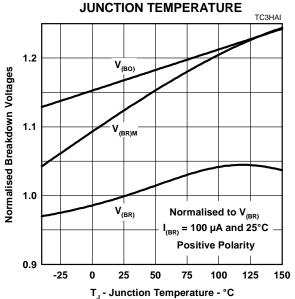
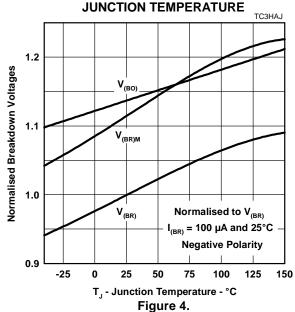



Figure 1. VOLTAGE-CURRENT CHARACTERISTIC FOR T AND R TERMINALS ALL MEASUREMENTS ARE REFERENCED TO THE R TERMINAL


TYPICAL CHARACTERISTICS R and T terminals

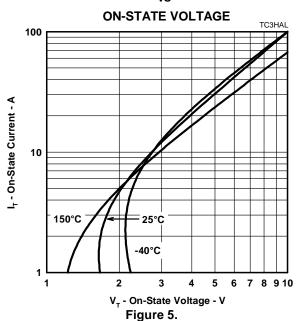
OFF-STATE CURRENT

VS


NORMALISED BREAKDOWN VOLTAGES

NORMALISED BREAKDOWN VOLTAGES

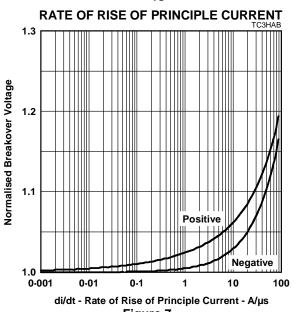
vs



ON-STATE CURRENT

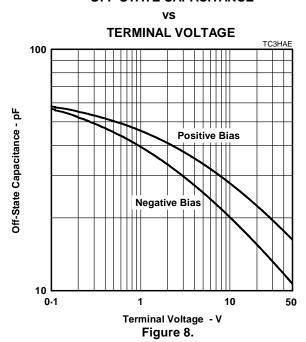
Figure 3.

vs

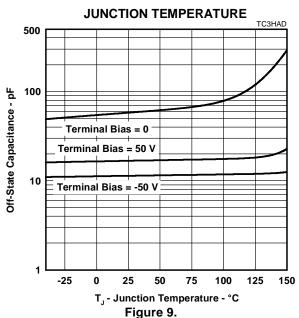

MARCH 1994 - REVISED SEPTEMBER 1997

TYPICAL CHARACTERISTICS R and T terminals

HOLDING CURRENT & BREAKOVER CURRENT

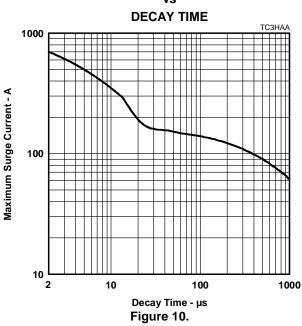

vs **JUNCTION TEMPERATURE** ТСЗНАН 1.0 I_H, I_(BO) - Holding Current, Breakover Current - A 0.9 0.8 0.7 0.6 0.5 (BO) 0.4 0.3 0.2 -25 0 25 50 75 100 125 150 T, - Junction Temperature - °C Figure 6.

NORMALISED BREAKOVER VOLTAGE


Figure 7.

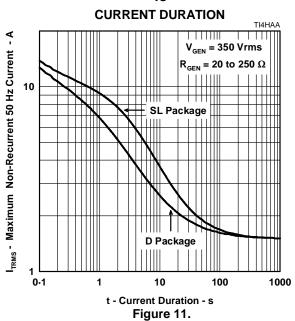
OFF-STATE CAPACITANCE

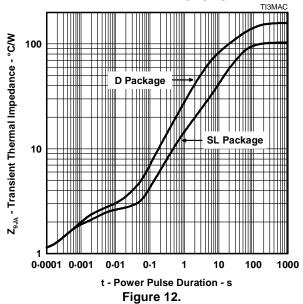
OFF-STATE CAPACITANCE



TYPICAL CHARACTERISTICS R and T terminals

SURGE CURRENT


vs


THERMAL INFORMATION

MAXIMUM NON-RECURRING 50 Hz CURRENT

vs

THERMAL RESPONSE

MARCH 1994 - REVISED SEPTEMBER 1997

APPLICATIONS INFORMATION

electrical characteristics

The electrical characteristics of a TISP are strongly dependent on junction temperature, T_J . Hence a characteristic value will depend on the junction temperature at the instant of measurement. The values given in this data sheet were measured on commercial testers, which generally minimise the temperature rise caused by testing. Application values may be calculated from the parameters' temperature curves, the power dissipated and the thermal response curve ($Z_{\rm A}$).

lightning surge

wave shape notation

Most lightning tests, used for equipment verification, specify a unidirectional sawtooth waveform which has an exponential rise and an exponential decay. Wave shapes are classified in terms of peak amplitude (voltage or current), rise time and a decay time to 50% of the maximum amplitude. The notation used for the wave shape is *amplitude*, *rise time/decay time*. A 50A, 5/310 µs wave shape would have a peak current value of 50 A, a rise time of 5 µs and a decay time of 310 µs. The TISP surge current graph comprehends the wave shapes of commonly used surges.

generators

There are three categories of surge generator type, single wave shape, combination wave shape and circuit defined. Single wave shape generators have essentially the same wave shape for the open circuit voltage and short circuit current (e.g. 10/1000 µs open circuit voltage and short circuit current). Combination generators have two wave shapes, one for the open circuit voltage and the other for the short circuit current (e.g. 1.2/50 µs open circuit voltage and 8/20 µs short circuit current) Circuit specified generators usually equate to a combination generator, although typically only the open circuit voltage waveshape is referenced (e.g. a 10/700 µs open circuit voltage generator typically produces a 5/310 µs short circuit current). If the combination or circuit defined generators operate into a finite resistance the wave shape produced is intermediate between the open circuit and short circuit values.

current rating

When the TISP switches into the on-state it has a very low impedance. As a result, although the surge wave shape may be defined in terms of open circuit voltage, it is the current wave shape that must be used to assess the required TISP surge capability. As an example, the CCITT IX K17 1.5 kV, 10/700 µs surge is changed to a 38 A, 5/310 µs waveshape when driving into a short circuit. Thus the TISP surge current capability, when directly connected to the generator, will be found for the CCITT IX K17 waveform at 310 µs on the surge graph and not 700 µs. Some common short circuit equivalents are tabulated below:

STANDARD	OPEN CIRCUIT VOLTAGE	SHORT CIRCUIT CURRENT
CCITT IX K17	1.5 kV, 10/700 μs	38 A, 5/310 μs
CCITT IX K20	1 kV, 10/700 μs	25 A, 5/310 μs
RLM88	1.5 kV, 0.5/700 μs	38 A, 0.2/310 µs
VDE 0433	2.0 kV, 10/700 µs	50 A, 5/200 μs
FTZ R12	2.0 kV, 10/700 µs	50 A, 5/310 µs

Any series resistance in the protected equipment will reduce the peak circuit current to less than the generators' short circuit value. A 2 kV open circuit voltage, 50 A short circuit current generator has an effective output impedance of 40 Ω (2000/50). If the equipment has a series resistance of 25 Ω then the surge current requirement of the TISP becomes 31 A (2000/65) and not 50 A.

APPLICATIONS INFORMATION

protection voltage

The protection voltage, $(V_{(BO)})$, increases under lightning surge conditions due to thyristor regeneration. This increase is dependent on the rate of current rise, di/dt, when the TISP is clamping the voltage in its breakdown region. The $V_{(BO)}$ value under surge conditions can be estimated by multiplying the 50 Hz rate $V_{(BO)}$ (250 V/ms) value by the normalised increase at the surge's di/dt (Figure 7.) . An estimate of the di/dt can be made from the surge generator voltage rate of rise, dv/dt, and the circuit resistance.

As an example, the CCITT IX K17 1.5 kV, 10/700 μ s surge has an average dv/dt of 150 V/ μ s, but, as the rise is exponential, the initial dv/dt is higher, being in the region of 450 V/ μ s. The instantaneous generator output resistance is 25 Ω . If the equipment has an additional series resistance of 20 Ω , the total series resistance becomes 45 Ω . The maximum di/dt then can be estimated as 450/45 = 10 A/ μ s. In practice the measured di/dt and protection voltage increase will be lower due to inductive effects and the finite slope resistance of the TISP breakdown region.

capacitance

off-state capacitance

The off-state capacitance of a TISP is sensitive to junction temperature, T_J , and the bias voltage, comprising of the dc voltage, V_D , and the ac voltage, V_d . All the capacitance values in this data sheet are measured with an ac voltage of 100 mV. The typical 25°C variation of capacitance value with ac bias is shown in Figure 13 When $V_D >> V_d$ the capacitance value is independent on the value of V_d . The capacitance is essentially constant over the range of normal telecommunication frequencies.

NORMALISED CAPACITANCE

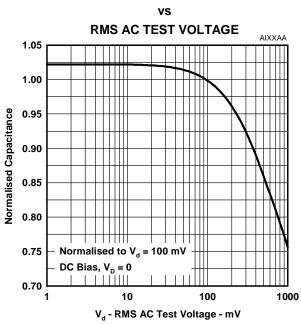
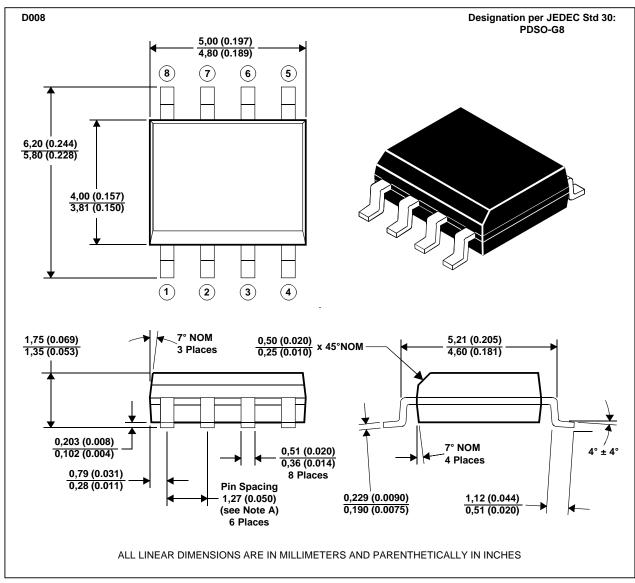


Figure 13.



MECHANICAL DATA

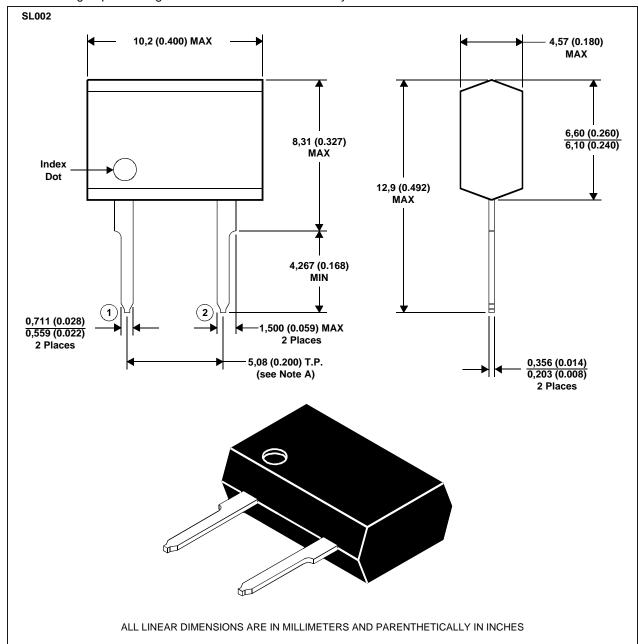
D008

plastic small-outline package

This small-outline package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Leads are within 0,25 (0.010) radius of true position at maximum material condition.

- B. Body dimensions do not include mold flash or protrusion.
- C. Mold flash or protrusion shall not exceed 0,15 (0.006).
- D. Lead tips to be planar within $\pm 0,051$ (0.002).


MDXXAA

MECHANICAL DATA

SL002

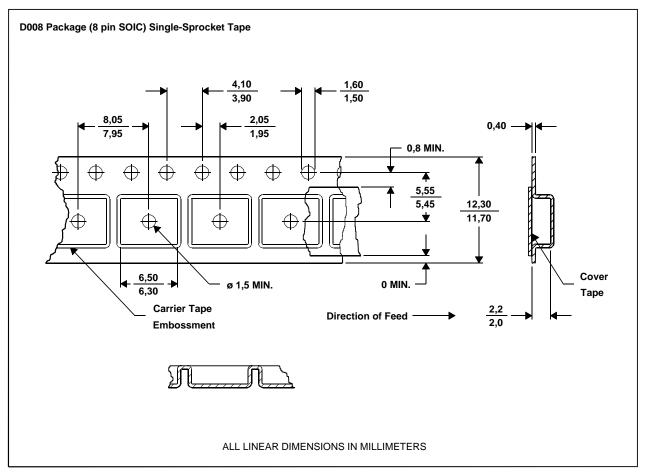
2-pin plastic single-in-line package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. Each pin centerline is located within 0,25 (0.010) of its true longitudinal position.

B. Body molding flash of up to 0,15 (0.006) may occur in the package lead plane.

MDXXAC



MARCH 1994 - REVISED SEPTEMBER 1997

MECHANICAL DATA

D008 tape dimensions

NOTES: A. Taped devices are supplied on a reel of the following dimensions:-

MDXXAT

Reel diameter: 330 +0.0/-4.0 mmReel hub diameter: $100 \pm 2.0 \text{ mm}$ Reel axial hole: $13.0 \pm 0.2 \text{ mm}$

B. 2500 devices are on a reel.

MARCH 1994 - REVISED SEPTEMBER 1997

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

