

Note 1:Devices also available in $13^{\prime \prime}$ reel. Use suffix = SCX
Note 2:Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB

Connection Diagrams

Pin Assignment for LCC
$A_{5} A_{4} A_{3} N C A_{2} A_{1} A_{0}$

TL/F/9581-4

Logic Diagrams

TL/F/9581-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
'F651

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select (SAB, SBA) controls can multiplex stored and real-time.
The examples in Figure 1 demonstrate the four fundamental bus-management functions that can be performed with the Octal bus transceivers and receivers.
Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the appro-
priate Clock Inputs (CPAB, CPBA) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

Note A: Real-Time Transfer Bus B to Bus A

OEAB DEBA CPAB CPbA SAB SbA

Note B: Real-Time Transfer Bus A to Bus B

TL/F/9581-7
OEAB OEBA CPAB CPBA SAB SBA $\begin{array}{lllll}H & X & X & L & X\end{array}$

oeab deba cpab cpba sab sba $\mathrm{X} \quad \mathrm{H}$ X X $\begin{array}{llllll}\mathrm{H} & \mathrm{H} & \mathrm{x} & \mathrm{X} & \mathrm{X}\end{array}$

Note D: Transfer Storage Data to A or B

TL/F/9581-9 OEAB OEBA CPAB CPBA SAB SBA H L HorL HorL H X

FIGURE 1

Inputs						Inputs/Outputs (Note 1)		Operating Mode
OEAB	OEBA	CPAB	CPBA	SAB	SBA	A_{0} thru A_{7}	B_{0} thru B_{7}	
L	H	H or L	H or L	X	X			Isolation
L	H	\checkmark	\checkmark	X	X			Store A and B Data
X	H	\checkmark	H or L	X	X	Input	Not Specified	Store A, Hold B
H	H	\checkmark	\checkmark	X	X	Input	Output	Store A in Both Registers
L	X	H or L	$\widetilde{ }$	X	X	Not Specified	Input	Hold A, Store B
L	L	\checkmark	Ω	X	X	Output	Input	Store B in Both Registers
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H or L	X	H			Store B Data to A Bus
H	H	X	X	L	X	Input	Output	Real-Time A Data to B Bus
H	H	H or L	X	H	X			Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\widetilde{ }=$ LOW to HIGH Clock Transition
Note 1: The data output functions may be enabled or disabled by various signals at OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias Junction Temperature under Bias Plastic
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to
Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
Input Voltage (Note 2)
-30 mA to +5.0 mA
nput Current (Note 2)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min)
4000 V

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{CC}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{n}, B_{n}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 20.0 \\ 5.0 \end{gathered}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \text { (Non I/O Pins) } \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 100 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA	Max	$\begin{aligned} & V_{I N}=5.5 \mathrm{~V} \\ & \left(A_{n}, B_{n}\right) \end{aligned}$
${ }^{\text {ICEX }}$	Output HIGH Leakage Current	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$			$\begin{gathered} 250 \\ 50 \end{gathered}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	74F	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
IOD	Output Leakage Circuit Current	74F			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{VI}_{\mathrm{IOD}}=150 \mathrm{mV} \\ & \text { All Other Pins Grounded } \end{aligned}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (Non I/O Pins)
$\mathrm{IIH}+\mathrm{l}_{\text {OZH }}$	Output Leakage Cur				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Cur				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
Ios	Output Short-Circuit	urrent	-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
ICCH	Power Supply Curre			105	135	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Curre			118	150	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Curre			115	150	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F		54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Max. Clock Frequency	90		75		90		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Clock to Bus	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 8.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Bus to Bus ('F651)	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Bus to Bus ('F652)	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay SBA or SAB to A or B	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	74F		54F		74F		Units
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$		
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time *OEBA to A	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 12.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Disable Time *OEBA to A	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time OEAB to B	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 14.0 \\ \hline \end{array}$	
$\begin{aligned} & \text { tpHZ } \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Disable Time OEAB to B	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW, Bus to Clock	$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$		$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$		$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW, Bus to Clock	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width HIGH or LOW							ns

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

54F/74F651•54F/74F652 Transceivers/Registers
Physical Dimensions inches (millimeters) (Continued)

24 Lead Cerpack
NS Package Number W24C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240	National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181	National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

