

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data Register A Inputs/	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	3-STATE Outputs	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Function Table

Inputs						Data I/O (Note 1)		Function
$\overline{\mathbf{G}}$	DIR	CPAB	CPBA	SAB	SBA	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$B_{0}-B_{7}$	
H	X	H or L	H or L	X	X	Input	Input	Isolation
H	X	\sim	X	X	X			Clock A_{n} Data into A Register
H	X	X	\sim	X	X			Clock B_{n} Data into B Register
L	H	X	X	L	X	Input	Output	A_{n} to B_{n}-Real Time (Transparent Mode)
L	H	\sim	X	L	X			Clock A_{n} Data into A Register
L	H	H or L	X	H	X			A Register to B_{n} (Stored Mode)
L	H	\sim	X	H	X			Clock A_{n} Data into A Register and Output to B_{n}
L	L	X	X	X	L	Output	Input	B_{n} to A_{n}-Real Time (Transparent Mode)
L	L	X	\sim	X	L			Clock B_{n} Data into B Register
L	L	X	H or L	X	H			B Register to A_{n} (Stored Mode)
L	L	X	\sim	X	H			Clock B_{n} Data into B Register and Output to A_{n}
	GH Vol	age Level		= LOW	oltage Le		X = Irrele	ant $\sim=$ LOW-to-HIGH Transition

Note 1: The data output functions may be enabled or disabled by various signals at the \bar{G} and DIR Inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0		V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage		0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage		－1．2	V	Min	$\mathrm{I}_{\mathrm{N}=}=-18 \mathrm{~mA}$（Non I／O Pins）
V_{OH}	Output HIGH $\quad 10 \% V_{C C}$ Voltage	2.0		V	Min	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% V_{C C}$ Voltage		0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current		5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$（Non I／O Pins）
$\mathrm{l}_{\text {BVI }}$	Input HIGH Current Breakdown Test		7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$（Non I／O Pins）
$\mathrm{l}_{\text {BVIT }}$	Input HIGH Current Breakdown（I／O）		0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
${ }_{\text {IOD }}$	Output Leakage Circuit Current		3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
$\mathrm{I}_{\text {IL }}$	Input LOW Current		－0．6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$（Non I／O Pins）
$\mathrm{I}_{\mathrm{H}}+\mathrm{l}_{\text {OZH }}$	Output Leakage Current		70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current		－650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
1 l	Output Short－Circuit Current	－100	－225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test		500	$\mu \mathrm{A}$	0．0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$\mathrm{I}_{\text {CCH }}$	Power Supply Current		135	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
${ }_{\text {CCL }}$	Power Supply Current		150	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current		150	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	90		75		90		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A or B	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time $\overline{\mathrm{OE}}$ to A or B	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 13.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{OE}} \text { to } \mathrm{A} \text { or } \mathrm{B} \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time DIR to A or B	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time DIR to A or B	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
${ }_{\text {ts }}(\mathrm{H})$	Setup Time, HIGH or LOW	5.0		5.0		5.0		
$\mathrm{t}_{\text {S }}(\mathrm{L})$	Bus to Clock	5.0		5.0		5.0		ns
$\mathrm{th}^{(H)}$	Hold Time, HIGH or LOW	2.0		2.5		2.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	Bus to Clock	2.0		2.5		2.0		ns
${ }_{\text {tw }}(\mathrm{H})$	Clock Pulse Width	5.0		5.0		5.0		ns
${ }^{t}{ }_{W}(\mathrm{~L})$	HIGH or LOW	5.0		5.0		5.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N24C
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
