

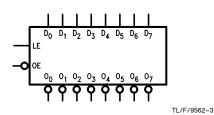
54F/74F563 Octal D-Type Latch with TRI-STATE® Outputs

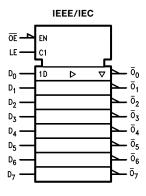
General Description

The 'F563 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable $(\overline{\text{OE}})$ inputs.

This device is functionally identical to the 'F573, but has inverted outputs.

Features


- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'F573


Commercial	Military	Package Number	Package Description		
74F563PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line		
	54F563DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line		
74F563SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC		
74F563SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ		
	54F563FM (Note 2)	W20A	20-Lead Cerpack		
	54F563LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C		

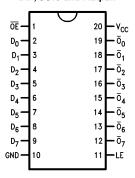
Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

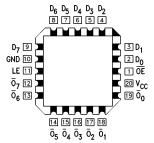
Logic Symbols

TL/F/9562-5

Unit Loading/Fan Out


		54F/74F			
Pin Names Description		U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
D ₀ -D ₇ LE OE	Data Inputs Latch Enable Input (Active HIGH) TRI-STATE Output Enable Input (Active LOW)	1.0/1.0 1.0/1.0 1.0/1.0	20 μ A/ $-$ 0.6 mA 20 μ A/ $-$ 0.6 mA 20 μ A/ $-$ 0.6 mA		
$\overline{O}_0 - \overline{O}_7$	TRI-STATE Latch Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

TRI-STATE® is a registered trademark of National Semiconductor Corporation


DDD D20M75 / Drinted in LL S. A.

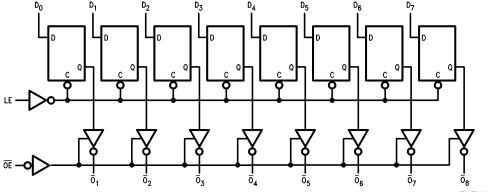
Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC

TL/F/9562-2

Functional Description


The 'F563 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Function Table

	Inputs		Internal	Output	Function		
ŌĒ	LE	D	Q	0			
Н	Χ	Х	Х	Z	High Z		
Н	Н	L	Н	Z	High Z		
Н	Н	Н	L	Z	High Z		
Н	L	Χ	NC	Z	Latched		
L	Н	L	н	Н	Transparent		
L	Н	Н	L	L	Transparent		
L	L	X	NC	NC	Latched		

- H = HIGH Voltage Level
- L = LOW Voltage Level X = Immaterial
 Z = High Impedance
 NC = No Change

Logic Diagram

TL/F/9562-1

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Storage Temperature} & -65^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \text{Ambient Temperature under Bias} & -55^{\circ}\text{C to} + 125^{\circ}\text{C} \\ \text{Junction Temperature under Bias} & -55^{\circ}\text{C to} + 175^{\circ}\text{C} \\ \text{Plastic} & -55^{\circ}\text{C to} + 150^{\circ}\text{C} \\ \end{array}$

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \text{Standard Output} & -0.5 \text{V to V}_{\text{CC}} \\ \text{TRI-STATE Output} & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

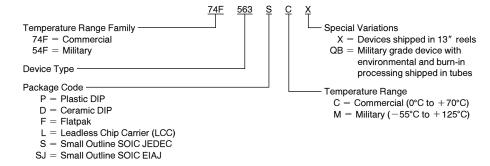
Supply Voltage

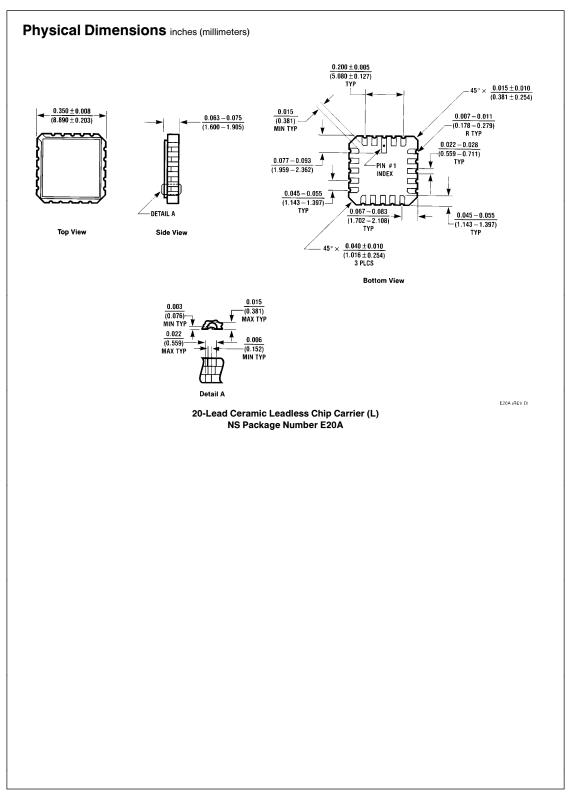
Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

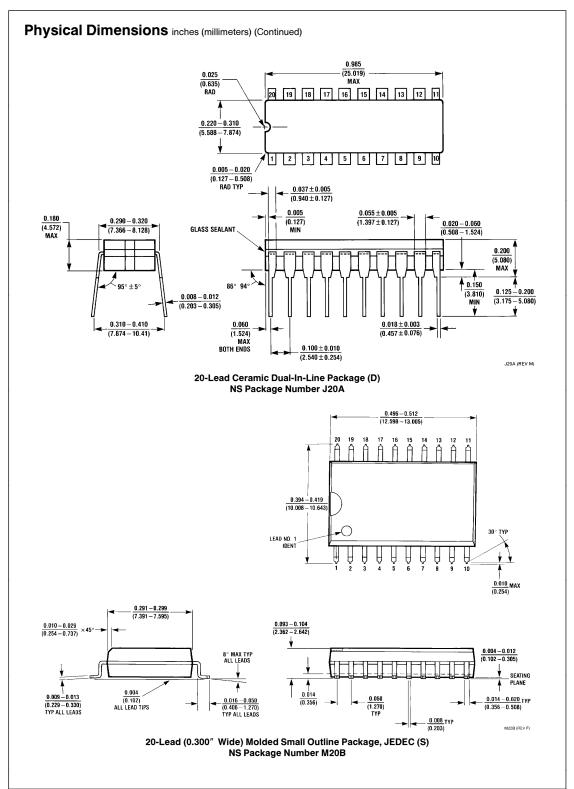
DC Electrical Characteristics

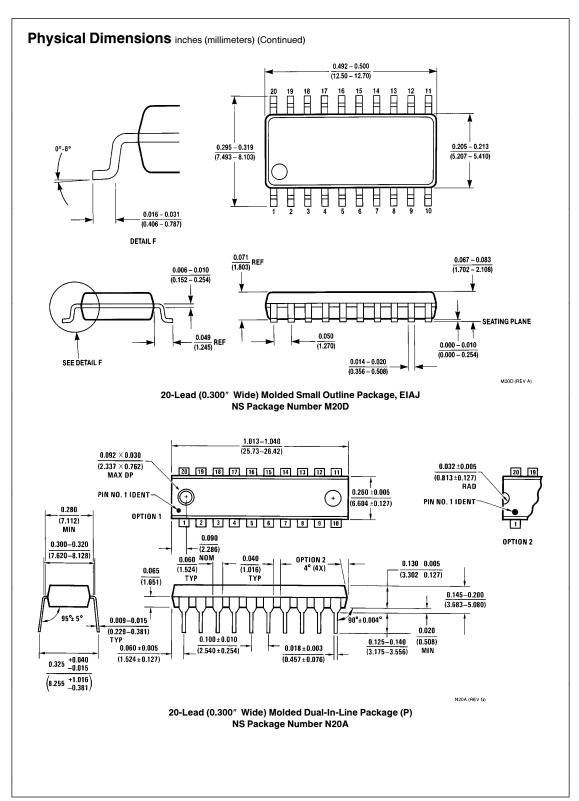
Symbol	Parameter		54F/74F			Units	V _{CC}	Conditions		
Symbol	Faranie	tei	Min	Тур	Max	Onits	VCC	Conditions		
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal		
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal		
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{\text{IN}} = -18 \text{mA}$		
V _{OH}	Output HIGH 54F 10% V _{CC} Voltage 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}		2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ \end{split}$		
V _{OL}	Output LOW 54F 10% V _{CC} Voltage 74F 10% V _{CC}				0.5 0.5	٧	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$		
I _{IH}	Input HIGH 54F Current 74F				20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$		
I _{BVI}	Input HIGH Current 54F Breakdown Test 74F				100 7.0	μΑ	Max	V _{IN} = 7.0V		
I _{CEX}	Output HIGH 54F Leakage Current 74F				250 50	μΑ	Max	V _{OUT} = V _{CC}		
V _{ID}	Input Leakage 74F		4.75			V	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded		
l _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded		
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V		
lozh	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V		
l _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V		
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V		
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V		
ICCL	Power Supply Current			40	61	mA	Max	$V_O = LOW$		
Iccz	Power Supply Curren	t		40	61	mA	Max	V _O = HIGH Z		

AC Electrical Characteristics

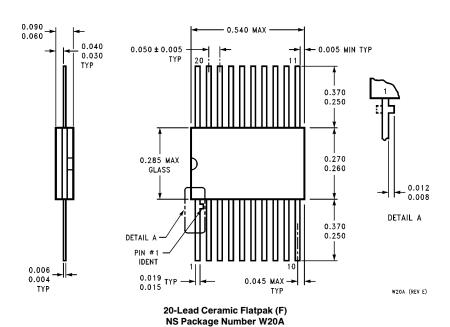

Symbol	Parameter				T _A , V _C	4F C = Mil 50 pF	74F T _A , V _{CC} = Com C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay D_n to \overline{O}_n	3.5 2.5		8.5 6.5	3.0 2.0	10.5 7.5	3.0 2.0	9.5 7.0	ns
t _{PLH} t _{PHL}	Propagation Delay LE to \overline{O}_n	4.5 3.0		9.5 7.0	4.0 2.5	11.0 7.5	4.0 2.5	10.5 7.0	ns
t _{PZH}	Output Enable Time	2.0 3.0		7.5 8.5	2.0 2.5	9.5 10.0	2.0 1.5	9.0 9.5	- ns
t _{PHZ}	Output Disable Time	1.5 1.5		5.5 5.5	1.5 1.5	7.0 5.5	1.5 1.5	6.5 5.5	


AC Operating Requirements


		$74F$ $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		54	ŀF	74F			
Symbol	Parameter			$T_A, V_{CC} = Mil$		T _A , V _{CC} = Com		Units	
		Min	Max	Min	Max	Min	Max]	
t _S (H)	Setup Time, HIGH or LOW D _n to LE	2.0 2.0		2.0 2.0		2.0 2.0		ns	
t _h (H)	Hold Time, HIGH or LOW D _n to LE	3.0 3.0		3.0 3.0		3.0 3.0		ns	
t _w (H)	LE Pulse Width, HIGH	4.0		4.0		4.0		ns	


Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:



Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melibourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.