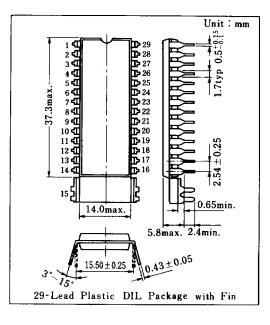
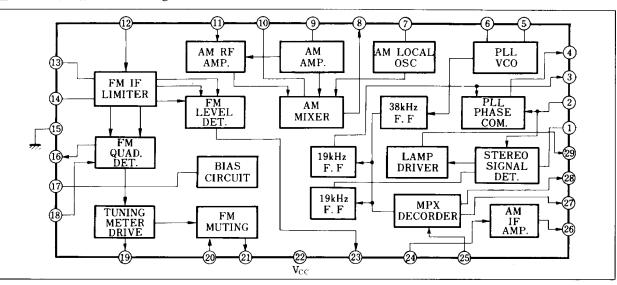
AN7001


ステレオチューナシステム/Stereo Tuner System

■ 概 要/Description


AN 7001 は AM の高周波増幅, IF 増幅, FM の IF 増幅, 検波, ステレオ復調回路を1チップに集積化した半導体集積回路です。 IC 内部にて AM, FM の切換えができるほか,部品点数が大幅に 削減できます。

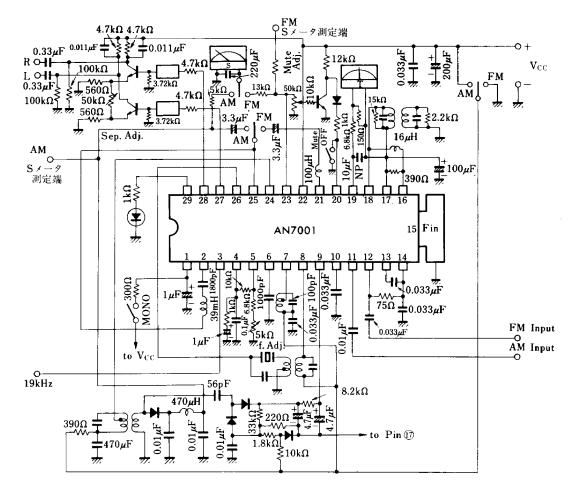
■特 徵/Features

- ●FM IF 増幅器は差動6段の直結りミッタアンプ
- ●FM 検波器はクォドラチャ方式
- ●FM MPX 復調回路は 19 kHz フィルタ, ポストアンプ外付
- ●ステレオアイ回路は19kHzの同相信号でステレオランプを駆動
- ●AM 高問波増幅回路は利得 18 dB, AGC 動作付
- ●AM ミキシング回路は利得 30 dB, AGC 動作付
- ●AM IF 増幅回路は利得 45 dB
- ●バンドミューティング設計幅:±50~90 kHz
- FM IF amplifier consists of direct coupled 6-stage differential limiter amplifier
- Quadrature detector for FM detection
- FM MPX demodulator used with external 19kHz filter and post amplifier
- Stereo eye circuit uses common phase 19kHz signal for stereo lamp driving

- AM RF amplifier : gain 18 dB with AGC
- AM mixing circuit: gain 30 dB with AGC
- •AM IF amplifier : gain 45dB
- Band muting width designed at $\pm 50 \sim 90 \, \text{kHz}$

■ ブロック図/Block Diagram

■ 絶対最大定格/Absolute Maximum Ratings (Ta = 25°C)


Item	Symbol	Rating	Unit V	
電源電圧	V _{CC}	14		
電源電流	I _{CC}	107	mA	
許容損失	PD	1.5	W	
動作周囲温度	T _{opr}	$-20 \sim +75$	°C	
保存温度	T _{stg}	$-55 \sim +150$	°C	

■ 電気的特性/Electrical Characteristics (V_{CC} = 12V, Ta = 25℃)

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
AM部 ($f_i = 1$ MHz, $f_m = 40$	0 Hz, Mod. 30)%)					
出力電圧(1)	V _O (1)	1	$V_i = 30 \text{ dB}$	53		136	mV _{rms}
出力電圧(2)	V _{O(2)}	1	$V_i = 60 \text{ dB}$	153		220	mV _{rms}
出力電圧(3)	Vo(3)	1	$V_i = 100 dB$	213		305	mVrms
信号対雑音比	S/N	1	$V_i = 55 dB$	43			dB
全高調波歪率	THD	1	$V_i = 100 \text{ dB}, \text{ Mod. 80\%}$			4	%
FM 部 $(f_i = 10.7 \text{ MHz}, f_m =$	$1 \text{ kHz}, \Delta f =$	75 k Hz,	Stereo Signal: $L = 90\%$, $L +$	R = 90%	%, Pil	pt = 10%	6)
S メータ振れ(1)	V ₂₃₋₁₅₍₁₎	1	$V_i = 35 dB$, Pin 23 DC			400	mV
Sメータ振れ(2)	V ₂₃₋₁₅₍₂₎	1	$V_i = 1000dB$, Pin 23 DC	4.8		6.8	V
	Vi (Mute)	1	Volume max.	39		51	dB
出力電圧	Vo	1		0.55		0.82	V _{rms}
チャンネルバランス	СВ	1	$V_i = 100 \text{ dB}$			1	dB
	Sep	1		45			dB
	THD	1	-			0.12	%
 全高調波歪率(Stereo)	THD	1				0.3	%
	Mod.	1	$V_i = 100 \text{ dB}$ Deviation	2		4.5	kHz
<u>++プチャーレンジ</u>	CR	1		350		900	Hz
	B _W (Mute)	1	$V_i = 100 \text{ dB}$	90		170	kHz
<u>出力オフセット電圧</u> (without Signal)	Voffset	1	6.8kΩ両端 (at muting off)	0.5		1.5	v
ミューティング減衰量	Mute _(Att)	1	V _i = 100 dB 強制ミュート	60			dB
	S/N	1	$V_i = 100 \text{ dB}$	70			dB

注) 動作電源電圧範囲 V_{CC(opr)}=11~13 V

Test Circuit 1

■ 主要機能の説明(ブロック図参照)

1) AM RF Amp.

AGC を備えた RF Amp.で,弱入力時には約17 dB の利得を持っています。 次段の Mixer にも 60 dB/m 入力から AGC がかかり, RF では 85 dB/m からかか り始めます。強入力 130 dB/m まで充分なダイナミッ クレンジを持ち,80%変調波で 10%以下の歪特性を 有しています。

2) AM Mixer

バランス型の Mixer で電流源, AGC, Osc, Mixer の4段を積み上げた構成でバランスの良い混合を行っ ています。 Mixer 部は差動増幅器の入力ダイナミッ クレンジを6dB向上させたことにより,大入力での 飽和を抑え安定な増幅を行っています。

3) AM Local Osc

単一端子に接続された LC 共振による発振器で,バラ

ンスの良い発振をします。LC 共振回路は V_{CC} から接 続されており,この電源の ON/OFF で IC 内部の AM, FM の切換を行っています(電子スイッチ方式)。これ は信号の内部干渉を防ぐために各機能の不要信号を殺 しています。

4) AM IF Amplifier

検波ダイオードと検波トランスによる検波器に都合の よいように増幅器が構成されており,45 dB 程度の利 得を持っています。

$5) \quad AM \ AGC$

AM IF のキャリアレベルを Peak hold して得た DC 電圧を AGC 回路に供給しています。検出した DC 電 圧のレベル 差を作り出すことにより,まず Mixer 部 に AGC がかかり始めます。次に RF 部にかかるとい う delayed AGC を構成しています。

6) FM IF Limiter

差動直結6段構成の Limiter Amp で,段間はエミッ タフォロワを付加せず1段当りの利得を少なくするこ とにより、安定な増幅を行っています。

最終段から負帰還をかけ DC 利得 85 dB, 10.7 MHzで の AC 利得 70 dB を得ています。

7) FM Detector

Quadrature 検波方式を採用しています。Carrier と して使用する 90°の位相シフトは外部部品による定数 設定で好みの選択度が得られるように考慮してあり, 同時に IC 内部抵抗の偏移に対して歪特性を維持する という効果も生み出しています。 歪特性は、75 kHz deviation の入力でモノラル時で

金特性は、75 kHz deviation の人力でモノラル時で 0.1%以下を実現しています。

8) FM Level Detector

入力信号のレベルによって消費電流が増加するのを防 ぐ完全バランス型のレベルメータドライブを構成して います。IF 入力でリミッティング感度付近から 120 dB 入力まで,ほぼりニアにメータを駆動する電圧を出し, 各種ミューティング回路の制御電圧としても使用して います。

9) FM Tuning Meter Drive

IF 検波器の S字特性を検出し,基準電圧との差によ ってメータを駆動させています。同時に中心周波数か ら数 10 kHz ずれたレベルによってスイッチを駆動す る構成であり, IF 人力の前に接続するセラミックフィ ルタの帯域付近に現われるサイドピークと局間ノイズ をミューティングするためのパルスを FM ミューティ ング回路に供給しています。

10) FM Muting

入力レベルに応じた DC 電圧と同離調時に現われるパ ルスを OR 回路で構成したスイッチによって,検波さ れた信号を Mute しています。Mute された時の出力 DC バイアス電圧と AF が出力された時のそれとは差 が現われないように考えられており,したがって,シ ョック音を最小にするようになっています。

11) MPX Decorder

PLL によって位相ロックされたキャリアによって, コンポジット信号を復調して, L信号, R 信号に振り 分けています。出力 DC 電圧が安定なダブルバランス 型の回路構成を採用し,出力はエミッタフォロワを介 して取り出し,その DC バイアスは後段にパイロット 成分,キャリアリーク成分除去のためのフィルタとポ ストアンプを直結するのに都合が良いように設計して あり,新しくバイアス回路を加える必要がありません。

12) PLL Phase Comparator

デコーダ入力とは別に PLL のループを形成するため のパイロット信号を位相比較器に供給しています。途 中 19 kHz のバンドパスフィルタであるL,Cトラップ を介して供給し,ループの安定度を高めている比較器 出力は電流駆動になっており,次段のVCOとの結合を 容易にしています。位相比較器では,かなり利得が高 く増幅した後に平衝変調を行っているため,中心 DC レベルが安定でキャプチャーレンジの中心は常に対称 となっています。

13) PLL VCO

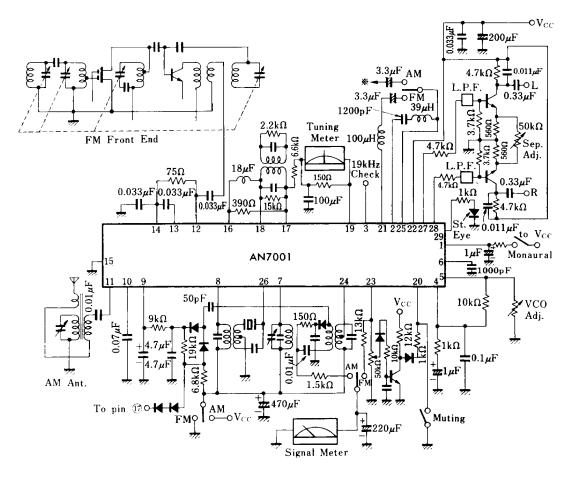
発振は コンデンサへ電流を流し込みによるチャージ と逆に等しい電流を引き出すことによって放電するこ とにより三角波を作る形式で,時間軸に対する充・放 電カーブの直線性が良いため,安定な発振器となって います。充・放電の電流の値によって発振周波数を制 御しているため,むしろ Current Control Osc.です。 また,発振周波数が15 kHz から 23 kHz 以内の範囲で のみループ系の周波数が制御されるように不感帯を設 計してあり,15 kHz 以下の AF 信号でループがロック されることはありません。

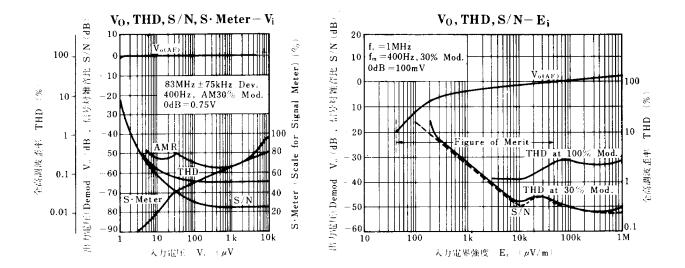
14) Flip Flop

VCO は 76kHz で発振しており、デコーダのキャリ アとして必要な 38kHz のための Flip Flop と、PLL ループ系のキャリアとして必要な 19kHz のための Flip Flop, さらに、この 19kHz とは位相の 90°異な ったステレオ信号検出のキャリアとして必要な 19kHz のための Flip Flop を設けています。

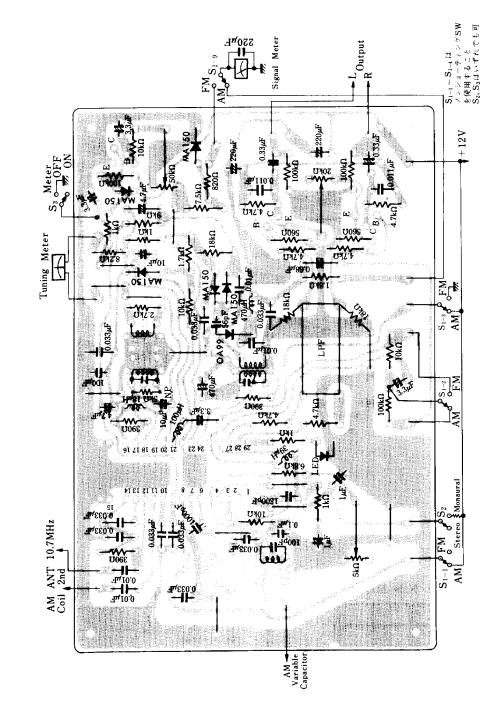
15) Stereo Signal Detector

パイロット信号の有無を検出し,デコーダにおけるモ ノラル,ステレオの切り替えを行うとともにランプの 点灯を行っています。


パイロット信号の検出は、PLL ループがロックした 状態でレベルを検出する同期検波方式を採っています。


16) Lamp Drive

Stereo Signal Detector によってスイッチを ON, OFF された信号レベルで、LED をドライブする増幅 器を設けています。


17) Voltage Regulator

重要なポイントの電圧はツェナーで安定化された電圧 を使用しています。電源電圧の変動は,2V当り10mV 程度の変動に抑えられています。また,5.6Vの安定 化の端子を設け Tuning Meter ドライブ等の基準電圧 としており,同時にデカップリングをすることにより,ツ ェナーノイズを取り去り回路のS/N 改善を図っています。

- 149 -

■ プリント板パターン例/Printed Circuit Board Layout