

3-channel Video Buffer with Built-in Wideband Filters

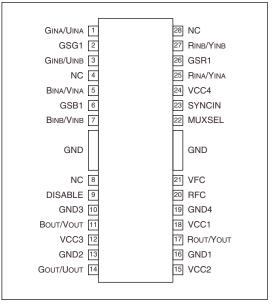
OVERVIEW

The SM5301AS is a video buffer with built-in video signal bandwidth lowpass filter. The filter employs a 5order Butterworth lowpass filter configuration. The filter characteristics have been optimized for minimal overshoot and flat group delay, it has a variable cutoff frequency and guaranteed driver-stage channel gain difference and phase difference values.

FEATURES

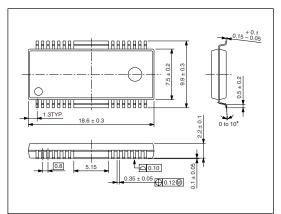
PINOUT

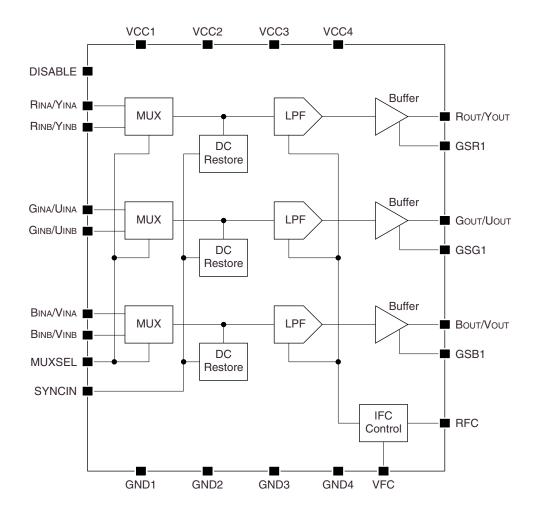
- Supply voltage: $5V \pm 10\%$
- VESA-standard ATSC digital TV RGB/YUV video filters
- 2-system input/1-system output switching analog multiplexer function
- DC voltage level restore sync clamp function
- Output buffer gain switching function: 0, 6dB (input-to-output AC signal gain)
- Channel-to-channel gain difference: 0.5dB (± 5% supply voltage variation)
- Channel-to-channel phase difference: 3.5 degree
- Output signal harmonic distortion (all channels): 1.5%
- Cutoff frequency: 5.8 to 37MHz variable
- Package: 28-pin HSOP (Pb free)


APPLICATIONS

- Set-top boxes
- Digital television
- DVD players
- Projector

ORDERING INFORMATION


Device	Package
SM5301AS	28-pin HSOP



PACKAGE DIMENSIONS

(Unit: mm)

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O	Description		
1	G _{INA} /U _{INA}	I	Analog G_{INA} or U_{INA} signal input. Sync signal is input on SYNCIN pin.		
2	GSG1	Ι	G _{OUT} /U _{OUT} output buffer gain set input		
3	G _{INB} /U _{INB}	I	Analog G_{INB} or U_{INB} signal input. Sync signal is input on SYNCIN pin.		
4	NC	-	No connection (leave open or connect to ground)		
5	B _{INA} /V _{INA}	Ι	Analog B_{INA} or V_{INA} signal input. Sync signal is input on SYNCIN pin.		
6	GSB1	Ι	B _{OUT} /V _{OUT} output buffer gain set input		
7	B _{INB} /V _{INB}	Ι	Analog B_{INB} or V_{INB} signal input. Sync signal is input on SYNCIN pin.		
8	NC	-	No connection (leave open or connect to ground)		
9	DISABLE	I	Power save function. Built-in pull-down resistor. L: Enable H: Disable (Output pins: R _{OUT} /Y _{OUT} , G _{OUT} /U _{OUT} , and B _{OUT} /V _{OUT} are high impedance.)		
10	GND3	-	Analog ground		
11	B _{OUT} /V _{OUT}	0	B/V signal output		
12	VCC3	-	Analog 5V supply		
13	GND2	-	Analog ground		
14	G _{OUT} /U _{OUT}	0	G/U signal output		
15	VCC2	-	Analog 5V supply		
16	GND1	-	Analog ground		
17	R _{OUT} /Y _{OUT}	0	R/Y signal output		
18	VCC1	-	Analog 5V supply		
19	GND4	-	Analog ground		
20	RFC	-	LPF (lowpass filter) cutoff frequency setting resistor connection		
21	VFC	I	LPF (lowpass filter) cutoff frequency setting voltage input		
22	MUXSEL	I	Input select signal. Built-in pull-down resistor. L: × _{INA} pin select H: × _{INB} pin select		
23	SYNCIN	Ι	Filter channel external H-Sync signal input. Active "H". Built-in pull-down resistor.		
24	VCC4	-	Analog 5V supply		
25	R _{INA} /Y _{INA}	Ι	Analog R _{INA} or Y _{INA} signal input. Sync signal is input on SYNCIN pin.		
26	GSR1	Ι	R _{OUT} /Y _{OUT} output buffer gain set input		
27	R _{INB} /Y _{INB}	Ι	Analog R _{INB} or Y _{INB} signal input. Sync signal is input on SYNCIN pin.		
28	NC	_	No connection (leave open or connect to ground)		

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{CC}	- 0.3 to 7.0	V
Storage temperature range	T _{stg}	- 55 to + 125	°C
Power dissipation 1 ¹	P _{D1}	1.0	W
Power dissipation 2 ²	P _{D2}	0.9	W

1. When mounted on a substrate: mounted on a 111 × 80 × 1.6mm glass-epoxy substrate with 90% copper (Cu) wiring factor, 0m/s air flow, and Ta = - 25 to 70 °C.

2. When mounted on a substrate: mounted on a 111 \times 80 \times 1.6mm glass-epoxy substrate with 90% copper (Cu) wiring factor, 0m/s air flow, and Ta = 70 to 80 °C.

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage ranges	V _{CC}	4.5 to 5.5	V
Operating temperature range	Та	– 25 to 85	°C

Electrical Characteristics

 $V_{CC} = 4.5$ to 5.5V, Ta = -25 to 85° C unless otherwise noted.

Parameter	Symbol Condition –	Rating			Unit	Test	
Faidinetei	Symbol	Condition	min	typ	max		level
Supply current 1	I _{CC1}	V_{CC} = 5.5V, RFC = 820 Ω to GND, VFC = 0.2V (fc = 5MHz), DISABLE = "L"	70	100	130	mA	I
Supply current 2	I _{CC2}	V_{CC} = 5.5V, RFC = 820 Ω to GND, VFC = 1.6V (fc = 40MHz), DISABLE = "L"	90	120	160	mA	I
Supply current 3	I _{CC3}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 5.5V, \mbox{ RFC} = 820 \Omega \mbox{ to GND}, \\ VFC = 0.2V \mbox{ (fc} = 40 \mbox{ MHz}), \\ \mbox{ DISABLE} = "\mbox{H}" \end{array}$	1	2.5	5	mA	I
Output gain error 1	ΔA_{V1}	Error entered around table 1 values, Ta = 0 to 70°C, $V_{CC} = 4.75$ to 5.25V	- 0.5	-	+ 0.5	dB	I
Output gain error 2	ΔA_{V2}	Error entered around table 1 values, Ta = -25 to 85° C	- 1	-	+ 1	dB	I
Output voltage	V _{out2}	$RL = 75\Omega$ to GND, 6dB gain setting	2.4	-	-	Vp-p	Ι
DISABLE-mode input impedance (pull-down)	R _{IN1}	R _{INA} /Y _{INA} , R _{INB} /Y _{INB} , G _{INA} /U _{INA} , G _{INB} /U _{INB} , B _{INA} /V _{INA} , B _{INB} /V _{INB}	-	50	-	kΩ	I
Clamp response time	T _{clamp}	Time for 90% output signal change for 10mV input signal, $C_{IN}=0.1 \mu F$	-	8	-	ms	II
Maximum input amplitude	VI	AC coupling, 6dB gain setting	-	-	1.4	Vp-p	I
Maximum overshoot	V _{OS}	2Vp-p output pulse	-	10	-	%	Ш
Maximum load capacitance	CL	B _{OUT} /V _{OUT} , G _{OUT} /U _{OUT} , R _{OUT} /Y _{OUT}	-	-	15	pF	II
Output drive load	RL	one load unit = 150Ω	-	-	2	load	I
Channel-to-channel gain difference	dG	Between R/G/B, fc/2 [Hz]	_	-	0.5	dB	I

SM5301AS

Dovementer	Parameter Symbol	Condition	Rating			11-14	Test
Parameter		Condition	min	typ	max	Unit	level
Channel-to-channel phase difference	dø	Between R/G/B, fc/2 [Hz]	-	3.5	-	degree	Ш
Output harmonic distortion	T _{HD}	Vout = 2Vp-p, f = 1MHz	-	1.5	-	%	=
Power supply rejection ratio	PSRR	V _{CC} = 0.5Vp-p, f = 100kHz	-	35	-	dB	=
Output short-circuit current	I _{SC}		-	-	100	mA	=
Logic HIGH-level input voltage 1	V _{IH1}	DISABLE, MUXSEL, SYNCIN	2.5	-	-	V	Ι
Logic LOW-level input voltage 1	V _{IL1}	DISABLE, MUXSEL, SYNCIN	-	-	1.0	V	Ι
Logic HIGH-level input voltage 2	V _{IH2}	GSB1, GSG1, GSR1	V _{CC} - 0.5	-	_	V	Ι
Logic LOW-level input voltage 2	V _{IL2}	GSB1, GSG1, GSR1	-	-	0.5	V	Ι
Logic pull-up resistance	R _{IN2}	GSB1, GSG1, GSR1	-	40	-	kΩ	I
Logic pull-down resistance	R _{IN3}	DISABLE, MUXSEL, SYNCIN	-	50	-	kΩ	I

Filter Characteristics

 V_{CC} = 4.5 to 5.5V, Ta = - 25 to 85°C unless otherwise noted.

Parameter	Symbol	Condition			Rating		Unit	Test
Parameter	Symbol			min	typ	max	Unit	level
Cutoff frequency adjustment range	F _C	Ta=25°C (see figure 1)	5.8	-	37	MHz	Ι
Cutoff frequency error	ΔF _C	$Ta = 25^{\circ}C, V_{CC} = 5.0$	V	-	-	± 20	%	Ι
4fc attenuation	f _{SB}	$fIN \ge 4fc$		-	50	-	dB	П
Output noise characteristic	V _{NOISE}	10kHz to 40MHz, 6dE setting	8 output gain	-	1.0	-	mV _{RMS}	II
Crosstalk	X _{TALK}	Between 2 channels with input 0.5Vp-p 1MHz		-	- 47	-	dB	II
Multiplexer crosstalk	X _{TALK}	Between MUX A–B		-	- 49	-	dB	П
Channel-to-channel group delay	T _{PD}	Each input = 500kHz		-	10	-	ns	I
	лт	Fc = 6.7MHz	to 3.58MHz	-	9	-	ns	II
	ΔT _{PD1}	(500kHz)	to 4.43MHz	-	15	-	ns	П
			to 3.58MHz	-	1	-	ns	II
Group delay variation	ΔT_{PD2}	Fc = 24MHz (500kHz)	to 4.43MHz	-	1	-	ns	II
			to 10MHz	-	2	-	ns	П
· -	Fc = 36MHz	to 10MHz	-	0.5	-	ns	II	
	ΔT _{PD3}	(1MHz)	to 30MHz	-	5	-	ns	II
VFC input voltage range	VFC			0.2	-	1.6	V	Ι

Test level

- I : 100% of products tested at Ta = $+ 25^{\circ}$ C.
- II: Guaranteed as result of design and characteristics evaluation.

Table 1. Output buffer gain control

GS×1	Gain [dB]
GND	0
VCC or Open	6

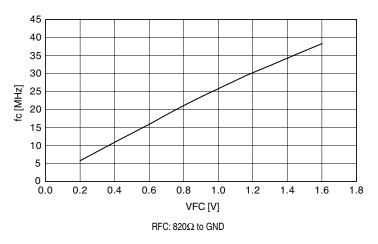
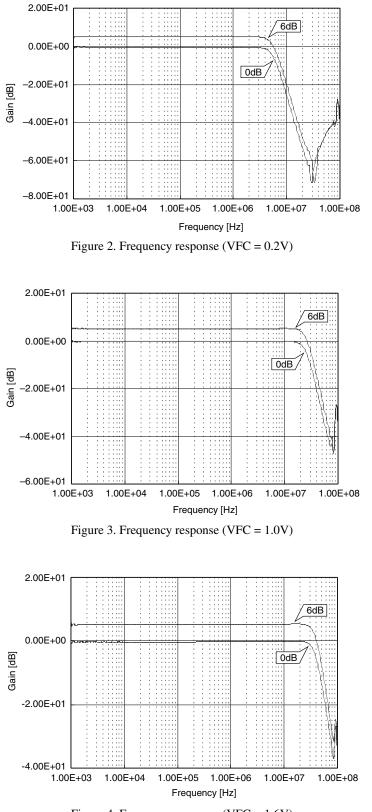
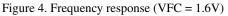
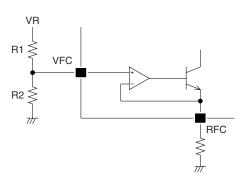
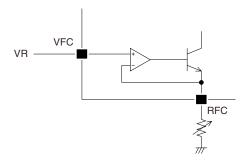




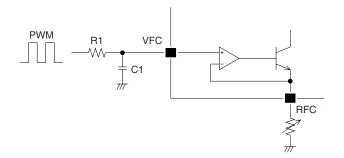
Figure 1. VFC vs. cutoff frequency



Adjusting the Cutoff Frequency


Constant-voltage control 1

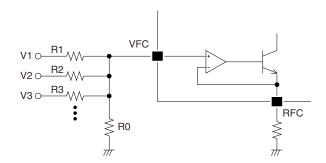
Cutoff frequency control using a reference voltage VR generated by voltage divider formed by R1 and R2.


Constant-voltage control 2

Cutoff frequency control by adjusting the resistance connected to RFC.

PWM control

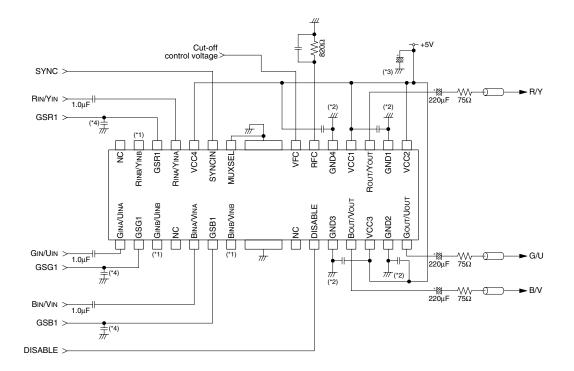
Cutoff frequency control by smoothing the PWM signal, using R1 and C1, input to VFC.


When VFC = 0.2V V_{DD} = 3.3V, 6% duty drive V_{DD} = 5.0V, 4% duty drive

When VFC = 1.6V V_{DD} = 3.3V, 48% duty drive V_{DD} = 5.0V, 32% duty drive

Note: The resistor connected to RFC can affect the cutoff frequency response, so a high-precision component should be used. It is recommended to set the RC filter cutoff frequency to < fc/100 of the PWM wave-form frequency.

Resistor switch control


The VFC voltage can be controlled using multi-logic voltage levels switching inputs to a voltage divider resistor network.

The VFC voltage is determined by the logic voltage (V1, V2, V3) and the corresponding voltage divider resistor network.

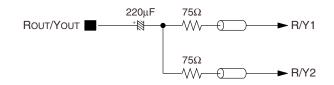
TYPICAL APPLICATION CIRCUITS

ATSC Digital TV Application

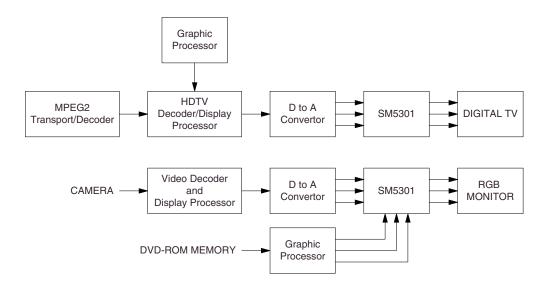
- (*1) Pins without an input signal, set by NUXSEL, should be left open or tied to GND.
- (*2) Connect $4 \times 0.1 \mu$ F capacitor between the supply pins close to the IC.
- (*3) Connect a 47μ F capacitor between the supply pins close to the IC.
- (*4) GS×1 are 3-level pins. Connect a capacitor if an error occurs due to external noise. Also, if open-circuit, the internal impedance and external capacitance (C) form an RC network. When power is applied, the open-circuit potential rises with time constant $\tau = C \times 10k$ (sec).
- (*5) Printed circuit board supply wiring
 - If the supply is used for other digital circuits, there is a possibility that noise will be introduced. Accordingly, these circuits should be connected to the application's analog supply.
 - Ground-plane wiring should be performed, as much as possible, to provide low GND line impedance.
 - If ground-plane wiring up to the GND pins is difficult, the ground plane should be as close to the IC as possible with a separate wire to each GND pin.

Input Capacitor and Cutoff Frequency

The capacitor connected to pins R_{INA}/Y_{INA} , R_{INB}/Y_{INB} , G_{INA}/U_{INB} , G_{INB}/U_{INB} , B_{INA}/V_{INA} , and B_{INB}/V_{INB} forms a highpass filter (HPF) with the internal impedance.


The HPF cutoff frequency is given by the following equation.

$$fc = \frac{1}{2\pi CR}$$


(C: input capacitance, R: signal input impedance = $9.3k\Omega$)

2-load Output Connection

 R_{OUT}/Y_{OUT} output 2-load connection (similarly for G_{OUT}/U_{OUT} , B_{OUT}/V_{OUT} outputs)

Digital TV Receiver and HDTV Decoder Box

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from approvals from approvals from approvals.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0202BE 2003.05