FEATURES

First－In／First－Out（FIFO）using Dual－Port Memory－Advanced CMOS TechnologyHigh Speed－to 10 ns Access TimeAsynchronous and Simultaneous Read and Write
－Fully Expandable by both Word Depth and／or Bit WidthEmpty and Full Warning FlagsHalf－Full Flag CapabilityAuto Retransmit Capability
Package Styles Available：
－28－pin Plastic DIP
－32－pin Plastic LCC
－28－pin Ceramic Flatpack

DESCRIPTION

The L8C201，L8C202，L8C203，and
L8C204 are dual－port First－In／First－ Out（FIFO）memories．The FIFO memory products are organized as：

$$
\begin{aligned}
& \text { L8C201 - } 512 \times 9 \text {-bit } \\
& \text { L8C202 - } 1024 \times 9 \text {-bit } \\
& \text { L8C203 - } 2048 \times 9 \text {-bit } \\
& \text { L8C204 - } 4096 \times 9 \text {-bit }
\end{aligned}
$$

Each device utilizes a special algorithm that loads and empties data on a first－ in／first－out basis．Full and Empty flags are provided to prevent data overflow and underflow．Three additional pins are also provided to allow for unlimited expansion in both word size and depth． Depth Expansion does not result in a flow－through penalty．Multiple devices are connected with the data and control signals in parallel．The active device is determined by the Expansion In（ $\overline{\mathrm{XI}})$ and Expansion Out $(\overline{\mathrm{XO}})$ signals which are daisy chained from device to device．

The read and write operations are internally sequential through the use of ring pointers．No address informa－ tion is required to load and unload data．The write operation occurs when the Write (\bar{W}) signal is LOW． Read occurs when Read $(\overline{\mathrm{R}})$ goes LOW．The nine data outputs go to the high impedance state when R is HIGH．Retransmit $(\overline{\mathrm{RT}})$ capability allows for reset of the read pointer when $\overline{\mathrm{RT}}$ is pulsed LOW，allowing for retransmission of data from the beginning．Read Enable（ $\overline{\mathrm{R}}$ ）and Write Enable（ $\overline{\mathrm{W}}$ ）must both be HIGH during a retransmit cycle，and then $\overline{\mathrm{R}}$ is used to access the data．A Half－Full $(\overline{\mathrm{HF}})$ output flag is available in the single device and width expansion modes．In the depth expansion configuration，this pin provides the Expansion Out（ $\overline{\mathrm{XO}}$ ）information which is used to tell the next FIFO that it will be activated．

These FIFOs are designed to have the fastest data access possible．Even in lower cycle time applications，faster access time can eliminate timing bottlenecks as well as leave enough margin to allow the use of the devices without external bus drivers．

The FIFOs are designed for those applications requiring asychronous and simultaneous read／writes in multiprocessing and rate buffer applications．

SIGNAL DEFINITIONS

Inputs

$\overline{R S}-$ Reset
Reset is accomplished whenever the Reset ($\overline{\mathrm{RS}}$) input is taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. Both the Read Enable ($\overline{\mathrm{R}}$) and Write Enable $(\overline{\mathrm{W}})$ inputs must be in the HIGH state during the window shown (i.e., $\mathbf{t W H S H}$ before the rising edge of $\overline{\mathrm{RS}}$) and should not change until tSHWL after the rising edge of $\overline{\mathrm{RS}}$. Hall-Full Flag $(\overline{\mathrm{HF}})$ will be reset to high after Reset ($\overline{\mathrm{RS}}$).

\bar{W} - Write Enable

A write cycle is initiated on the falling edge of this input if the Full Flag ($\overline{\mathrm{FF}}$) is not set. Data setup and hold time must be adhered to with respect to the rising edge of the Write Enable (\bar{W}). Data is stored in the RAM array sequentially and independently of any on-going read operation.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Upon the completion of a valid read operation, the Full Flag ($\overline{\mathrm{FF}}$) will go HIGH affer tRHFH, allowing a valid write to begin. When the FIFO is fall, the internal write pointer is blocked from \bar{W}, so external changes in \bar{W} wil not affect the FIFO when it is full.

A read cycle is initiated on the falling edge of the Read Enable ($\overline{\bar{R}}$) provided the Empty Flag $(\overline{\mathrm{EF}})$ is not set. The data is accessed on a First-In/FirstOut basis, indepenuent of any ongoing write operation. After Read Enable ($\overline{\mathrm{R}}$) goes HIGH, the Data Outputs (D8-0) will return to a high impedance condition until the next read operation. When all the data has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, allowing the
"final" read cycle but inhibiting further read operations with the data outputs remaining in a high impedance state. Once a valid write operating has been accomplished, the Empty Flag $(\overline{\mathrm{EF}})$ will go HIGH after tWHEH and a valid read can then begin. When the FIFO is empty, the internal read pointer is blocked from $\overline{\mathrm{R}}$ so external changes in $\overline{\mathrm{R}}$ will not affect the FIFO.

$\overline{F L} / \overline{R T}$ — First Load/Retransmit

This is a dual-purpose input. In the Depth Expansion Mode, this pin is grounded to indicate that it is the first loaded (see Operating Modes). In the Single Device Mode, this pin acts 25 the retransmit input. The Single Device Mode is initiated by grounding the Expansion In ($\overline{\mathrm{XI}})$.

The FIFOs can be made to retransmit data when the Retransmit Enable control $(\overline{\mathrm{RT}})$ input is polsed LOW. A retransmit operation willset the internal read pointer to the first location and will not atfect the write pointer. Read Enable ($\overline{\mathrm{R}}$) and Write Enable ($\overline{\text { W }}$) must be in the HIGH state during retransmit. This feature is useful when less than the full memory has been written between resets. Retransmit will affect the Half-Fun Flag $(\overline{\mathrm{HF}})$, depending on the relative locations of the read and write pointers. The retransmit feature is not compatible with the Septh Expansion Mode.

$\overline{X I}$ - Expansion In

This input is a dual-purpose pin. Expansion In $(\overline{\mathrm{XI}})$ is grounded to indicate an operation in the single device mode. Expansion In ($\overline{\mathrm{XI}})$ is connected to Expansion Out $(\overline{\mathrm{XO}})$ of the previous device in the Depth Expansion or Daisy Chain Mode.

D8-0 — Data Input

Data input signals for 9-bit wide data. Data has setup and hold time requirements with respect to the rising edge of \bar{W}.

Outputs

$\overline{F F}$ - Full Flag
The Full Flag $(\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations, indicating that the device is full. If the read pointer is not moved after Reset ($\overline{\mathrm{RS}}$), the Full Flag $(\overline{\mathrm{FF}})$ will go LOW after 512 writes for the L8C201, 1024 writes for the L8R202, 2048 writes for the L8C203, ard 4096 writes for the L8C204.

The Empty Flag (EF) will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating that the device is empty.

$\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ Expansion Out/Half-Full Flag

This is a dual-purpose output. In the Single Device Mode, when Expansion In. (XI) is grounded, this output acts as an indication of a half-full memory.
After half of the memory is filled and at the falling edge of the next write operation, the Half-Full Flag ($\overline{\mathrm{HF}})$ will be set to LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one-half of the total memory of the device. The Half-Full Flag ($\overline{\mathrm{HF}}$) is then deasserted by the rising edge of the read operation.

In the Depth Expansion Mode, Expansion In ($\overline{\mathrm{XI}})$ is connected to Expansion Out $(\overline{\mathrm{XO}})$ of the previous device. This output acts as a signal to the next device in the daisy chain by providing a pulse to the next device when the previous device reaches the last location of memory.

Q8-0 - Data Output

Data outputs for 9-bit wide data. This data is in a high impedance condition whenever Read Enable $(\overline{\mathrm{R}})$ is in a HIGH state or the device is empty.

OPERATING MODES

Single Device Mode

A single FIFO may be used when the application requirements are for the number of words in a single device. The FIFOs are in a Single Device Configuration when the Expansion In $(\overline{\mathrm{XI}})$ control input is grounded. In this mode the Half-Full Flag ($\overline{\mathrm{HF}})$, which is an active-low output, is the active function of the combination pin $\overline{\mathrm{XO}} /$ $\overline{\mathrm{HF}}$.

Width Expansion Mode
Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Status flags ($\overline{\mathrm{EF}}, \overline{\mathrm{FF}}$, and $\overline{\mathrm{HF}}$) can be detected from any one device. Any word width can be attained by adding additional FIFOs. Flag detection is accomplished by monitoring the $\overline{\mathrm{FF}}$, $\overline{\mathrm{EF}}$, and $\overline{\mathrm{HF}}$ signals on either (any) device used in the width expansion configuration. Do not connect any output signals together.

Depth Expansion (Daisy Chain) Mode

The FIFOs can easily be adapted to applications where the requirement are for greater than the number of words in a single device. Any depth can be attained by adding additiona FIFOs. The FIFOs operates in the Depth Expansion configuration when the following conditions are met:

1. The first device must be designated by grounding the First Lozd (FL) control jput.
2. All other devices must have $\overline{\mathrm{FL}}$ in the HIGH state.
3. The Expansion Out (XO) pin of each de vice must be tied to the Expansion in $(\overline{\text { XI }}$, pin of the next device with the last device connecting back to the first.
\qquad
4. External logic is needed to generate a composite Full Flag ($\overline{\mathrm{FF}}$) and Empty Flag ($\overline{\mathrm{EF}}$). This requires the ORing of all EFs and ORing of all $\overline{\text { FFs }}$ (i.e., all must be set to generate the correct composite $\overline{\mathrm{FF}}$ or $\overline{\mathrm{EF}}$).
5. The Retransmit ($\overline{\mathrm{RT}}$) function and Half-Full Flag ($\overline{\mathrm{HF}})$ are not available in the Depth Expansion Mode.

Bidirectional Mode

Applications which require data buffering between two systems (each system capable of read and write operations) can be achieved by pairing FIFOs. Care must be taken to assure that the appropriate flag is monitore d by each system (i.e., $\overline{\mathrm{FF}}$ is monitored on the device when \bar{W} is used. $E \bar{E} /$ is monitored on the device when F used). Both Depth Expansion and Width Expansion may be used in this mode.

Maximum Ratings Above which useful life may be impaired (Notes 1, 2)	
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-0.5 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs. 25 mA

Operating Conditions To meet specified electrical and switching characteristics

L8C201/202/203/204

SWITCHING CHARACTERISTICS Over Commercial and Industrial Operating Range

Asynchronous Read and Write Operation

SWITCHING CHARACTERISTICS Over Commercial and Industrial Operating Range

Full/Empty Flag and Retransmit Timing (ns)									
Symbol	Parameter	L8C201/202/203/204-							
		25		15		12		10	
		Min	Max	Min	Max	Min	Max	Min	Max
trLQV	Read Low to Output Valid (Access Time)		25		15		12		10
trLeL	Read Low to Empty Flag Low		25		15		12		10
tRHFH	Read High to Full Flag High		25				12		10
tWHEH	Write High to Empty Flag High		25		15		2		10
tWLFL	Write Low to Full Flag Low		25		15		12		10
ttLaL	Retransmit Cycle Time	35		25)				15	
ttLTH	Retransmit Low to End of Retransmit Cycle (Notes 8, 9, 10)	25						10	
tahth	Read/Write High to Retransmit High (Notes 8, 9, 10)							10	
tthal	Retransmit High to Read/Write Low (Note 9)					8		5	

Full Flag from Last Write to First Read

L8C201/202/203/204

SWITCHING CHARACTERISTICS Over Commercial and Industrial Operating Range

Half-Full Flac Timing

SWITCHING CHARACTERISTICS Over Commercial and Industrial Operating Range

EXPANSION TIMING (ns)									
Symbol	Parameter	L8C201/202/203/204-							
		25		15		12		10	
		Min	Max	Min	Max	Min	Max	Min	Max
tALOL	Read/Write to Expansion Out Low (Note 11)		25		15		12		12
tAHOH	Read/Write to Expansion Out High (Note 11)		25		15		12		12
tXLXH	Expansion In Pulse Width (Notes 9, 11)	25		15		12		10	
tXHXL	Expansion In High to Expansion In Low (Notes 9, 11)	10		10		10		10	
tALXL	Read/Write Low to Expansion In Low (Notes 9, 11)	15		12		8		8	

SWITCHING CHARACTERISTICS Over Military Operating Range

Asynchronous and Reset Timing (ns)								
Symbol	Parameter		L8C201/202/203/204-					
			40		30		20	
			Min	Max	Min	Max	Min	Max
trLRL	Read Cycle Time (MHz)		50		40		30	
trLQv	Read Low to Output Valid (Access Time)			40		30		20
tRHRL	Read High to Read Low (Notes 8, 9)		10		10		10	
trLRH	Read Low to End of Read Cycle (Notes 8, 9)		40	-	30		20	
trhav	Read High to Output Valid		5				5	
trHQZ	Read High to Output High Z (Note 14)					20		15
twLwL	Write Cycle Time (Note 9)		50		40			
tWLWH	Write Low to Write High (Notes 8, 9)		49				20	
twhwL	Write High to End of Write Cycle (Notes 8, 9)		10		10		10	
tovwh	Data Valid to Write High (Notes 8, 9)		20		18		12	
twhDX	Write High to Data Change (Notes 8, 9)		0		0		0	
tsLSH	Reset Cycle Time (Notes 9, 10)		40		30		20	
tsLWL	Reset Low to Write Low (Notes 9, 10)		50		40		30	
twHSH	Write High to Reset High (Notes 9, 10)		40		30		20	
tRHSH	Read High to Reset High (Notes 9, 10)		40		30		20	
tshwL	Reset High to Write Low (Notes 9, 10)	5	10		10		10	
tslel	Reset Low to Empty Flag Low			50		40		30
tsLHH	Reset Low to Half-Full Flag High			50		40		30
tSLFH	Reset Low to Full Flag High	$($		50		40		30

Asynchronous Read and Write Operation

SWITCHING CHARACTERISTICS Over Military Operating Range

Full/Empty Flag and Retransmit Timing (ns)

Symbol	Parameter	L8C201/202/203/204-					
		40		30		20	
		Min	Max	Min	Max	Min	Max
trLQv	Read Low to Output Valid (Access Time)		40		30		20
trLEL	Read Low to Empty Flag Low		30		30		20
trhen	Read High to Full Flag High		35		30		20
twHEH	Write High to Empty Flag High				39		20
twLFL	Write Low to Full Flag Low				30		20
ttLaL	Retransmit Cycle Time					30	
ttLTH	Retransmit Low to End of Retransmit Cycle (Notes 8, 9, 10)	40					
tahth	Read/Write High to Retransmit High (Notes 8, 9, 10)					20	
tTHAL	Retransmit High to Read/Write Low (Note 9)			10		10	

Full Flag from Last Write to First Read

SWITCHING CHARACTERISTICS Over Military Operating Range

Half-Full Flac Timing

SWITCHING CHARACTERISTICS Over Military Operating Range

EXPANSION TIMING (ns)							
Symbol	Parameter	L8C201/202/203/204-					
		40		30		20	
		Min	Max	Min	Max	Min	Max
talol	Read/Write to Expansion Out Low (Note 11)		40		30		20
tAHOH	Read/Write to Expansion Out High (Note 11)		40		30		20
tXLXH	Expansion In Pulse Width (Notes 9, 11)	40		30		20	
tXHXL	Expansion In High to Expansion In Low (Notes 9, 11)	10				10	
tALXL	Read/Write Low to Expansion In Low (Notes 9, 11)	10		10		10	

Figure 1. FIFO Memory (Depth Expansion) Block Diagram

Table 1. Reset and Retransmit (Single Device Configuration/Width Expansion Mode)

MODE	INPUTS INTERNAL STATUS					OUTPUTS		
	$\overline{\mathbf{R S}}$	$\overline{\mathrm{RT}}$	X 1	Read Pointer	Write Pointer	$\overline{\text { EF }}$	$\overline{\text { FF }}$	$\overline{\text { HF }}$
Reset	0	X		dcation Zero	Location Zero	0	1	1
Retransmit				Location Zero	Unchanged	X	X	X
Read/Write				rement	Increment	X	X	X

Table 2 Reset and First Loae Truth Table (Depth Expansion/Compound Expansion Mode)

IMODE	INPUTS			INTERNAL STATUS		OUTPUTS	
	RS	$\overline{\mathrm{RT}}$	$\overline{\mathrm{XI}}$	Read Pointer	Write Pointer	$\overline{\text { EF }}$	$\overline{\text { FF }}$
Reset First Device Reset AlNOthers Read/Write	0	0 1 (2)	(1) (1) (1)	Location Zero Location Zero Disabled X	Location Zero Location Zero Disabled X	0 0 \times	$\begin{aligned} & 1 \\ & 1 \\ & \times \end{aligned}$

(1) See Figure 1 (Depth Expansion Block Diagram)
(2) Unchanged

NOTES

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. "Typical" supply current values are not shown but may be approximated. At a VCC of +5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
5. Tested with outputs open and data inputs changing at the specified read and write cycle rate. The device is neither full or empty for the test.
6. Tested with outputs open in the static input control signal combination (i.e., $\bar{W}, \bar{R}, \overline{X I}, \overline{F L}$, and $\overline{R S})$.
7. These parameters are guaranteed but not 100% tested.
8. Test conditions assame input tansition times of 5 ns or less, reference levels of 1.5 V output loading for specified $\mathbf{1 O}$ and IOH plus 30 pF (Fig. 2a), andinputpulse levelg of 0 to 3.0 V (F 1 g 3).
9. Each parameter is show as a minum or maximurn value. Input requirements are specified from the point of viey of the external system driving the chip. For example, tRLRH is specified as a minimum since the external system must supply at least that much time to meet the worst-case require-
ments of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
10. When cascading devices, the reset pulse width must be increased to equal tSLSH + tSLHH.
11. It is not recommended that Logic Devices and other vendor parts be cascaded together. The parts are designed to be pin-for-pin compatible but temperature and voltage compensation may vary from vendor to vendor. Logic Devices can only guarantee the cascading of Logic Devices parts to other Logic Devices parts.
12. Tested with output open and $\overline{\mathrm{RS}}=\overline{\mathrm{F}} \overline{\mathrm{XI}}$ $=\overline{\mathrm{XI}}=\overline{\mathrm{R}}=\overline{\mathrm{W}}=\mathrm{Vcc}$.
13. At any given temperature and yoltage condition, output disable time is less than output enable time for any given de vice.
14. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Fig. 2b. This parameter is sampled and not 100% tested.
15. This produetis a very bigh speed de ice and care must be taken during testing in order torreaiize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided/by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor 15 also required between VCC and ground. To avoid signal reflections, proper terminations nust be used.

