

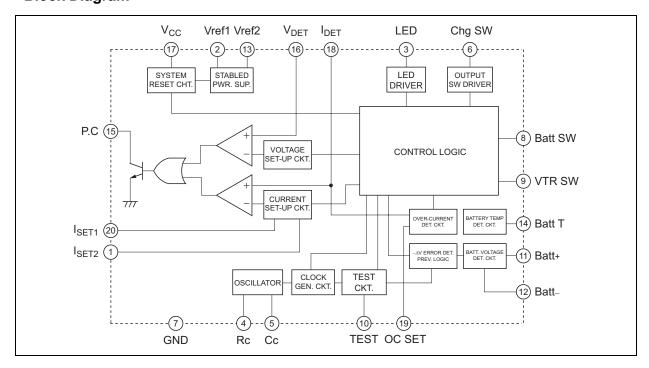
M62240FP

Single Chip Battery Charger Control IC

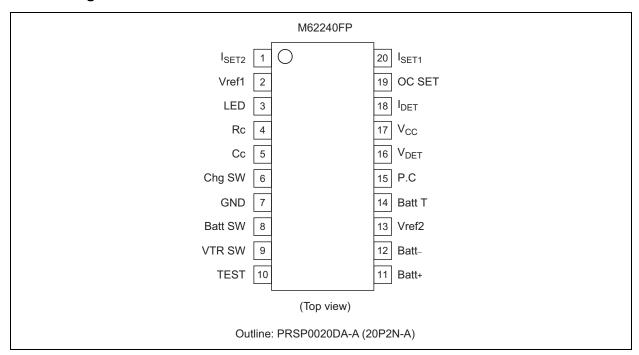
REJ03F0239-0200 Rev.2.00 Sep 14, 2007

Description

The M62240FP is a general purpose battery charger control IC. It can control all of the sequence needed for battery charging, it also has functions such as detection of battery temperature, a protection against over-current/voltage, a safety timer and so on. Moreover, it can adapt to charge Ni-Cd, Ni-MH batteries by adding few peripheral components. The IC has the feedback control of the charge current and output voltage.


Features

- **x** Low voltage (3 V) operation
- x Built-in following functions and circuits;
 - · CR oscillator for internal logic
 - Initialization timer and safety timer for 'V error detection and over-charging
 - D/A converter and shift registers to maintain the peak voltage of battery
 - Main output SW driving circuits
 - LED driving circuit for displaying the status of the charging
 - System reset circuit for detecting the power supply voltage
 - Temperature detection circuit for the Ni-MH battery
 - Voltage and current control circuits for feedback to the primary side of the SMPS.
 - Protective functions including detection of over-voltage in charge mode and over-current in adapter mode and so on


Application

Battery charger for video cameras and handheld telephones, etc.

Block Diagram

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
3	LED	LED drive (Open collector outputs)
4, 5	Rc, Cc	Setting the oscillating frequency of the internal clocks.
6	Chg SW	The SW drive terminal used for charging battery. (Open collector outputs)
7	GND	Ground
8	Batt SW	Checking whether a battery is mounted or not. (It has a pull-up resistor)
9	VTR SW	Detecting VTR connection. (It has a pull-up resistor)
10	TEST	Test mode set-up. (It has a pull-up resistor)
11	Batt+	This is connected to the + terminal of the battery.
12	Batt-	This is connected to the – terminal of the battery.
14	Batt T	This is connected to the temperature detecting terminal of the battery.
13	Vref2	The voltage reference terminal for temperature detection.
15	P.C	This is connected to the photo-coupler used for feedback.
		(It has a pull-up resistor)
16	V _{DET}	Monitoring the output voltage.
18	I _{DET}	Detecting the charging current or output current.
19	OC SET	Setting the over-current detection value in the adapter mode.
20, 1	I _{SET1, 2}	These are used to the charging current.
		(I _{SET1} is for quick charge and I _{SET2} is for trickle charge)
2	Vref1	Setting the standard voltage for over-current set-up value and the charge
		current set-up.
17	Vcc	Power supply.

Absolute Maximum Ratings

(Ta = 25qC, unless otherwise noted)

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	16	V	
Chg SW terminal drive current	I _{ChgSW}	50	mA	
LED drive current	I _{LED}	20	mA	
P.C drive current	I _{P.C}	20	mA	
Vref1 output current	Iref1	-0.5	mA	
Vref2 output current	Iref2	-1	mA	
Power dissipation	Pd	650	mW	
Thermal derating	KT	6.5	mW/qC	Ta = 25qC
Operating temperature	Topr	-20 to +75	¢C	Ta > 25qC
Storage temperature	Tstg	-40 to +125	фC	

Note: Polarity of current:

The direction of current flowing into the IC is equivalent to the positive (+). The direction of current flowing out of the IC is equivalent to the negative (-). The voltage applied to the open collector output terminal should be less than the absolute maximum voltage of the power supply.

The voltage difference between the negative terminal of the battery and the GND terminal should be 0 to 0.6 V.

Electrical Characteristics

 $(V_{CC} = 7 \text{ V}, \text{ Ta} = 25 \text{qC}, \text{ unless otherwise noted})$

All Device

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply voltage	V _{CC}	3.0	_	15.0	V	
Circuit current	Icc	10.0	20.0	30.0	mA	V _{CC} = 7 V, when quick charge
Power supply detecting voltage	V _{THVCC}	2.70	2.80	2.90	V	

Reference

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Vref1 output voltage	Vref1	1.21	1.25	1.30	V	Iref1 = 150 PA
Vref2 output voltage	Vref2	1.73	1.80	1.87	V	Iref2 = 350 PA

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
OC SET terminal flow out	I _{OCSET}	-1	_	_	PA	V _{OCSET} = 220 mV
current						
I _{SET1} terminal flow out current 1	I _{SET1-1}	30	50	85	PA	Excluding charging
						time
I _{SET1} terminal flow out current 2	I _{SET1-2}	-1	_	_	PA	When charging
I _{SET2} terminal flow out current 1	I _{SET2-1}	30	50	85	PA	Excluding trickle
						charging time
I _{SET2} terminal flow out current 2	I _{SET2-2}	-1	_	_	PA	When trickle charging

Driver

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Chg SW terminal output flow out current	Vsat _{ChgSW}	1	0.3	0.6	٧	$I_{ChgSW} = 30 \text{ mA}$
LED output low voltage	Vsat _{LED}	_	0.3	0.6	V	I _{LED} = 10 mA

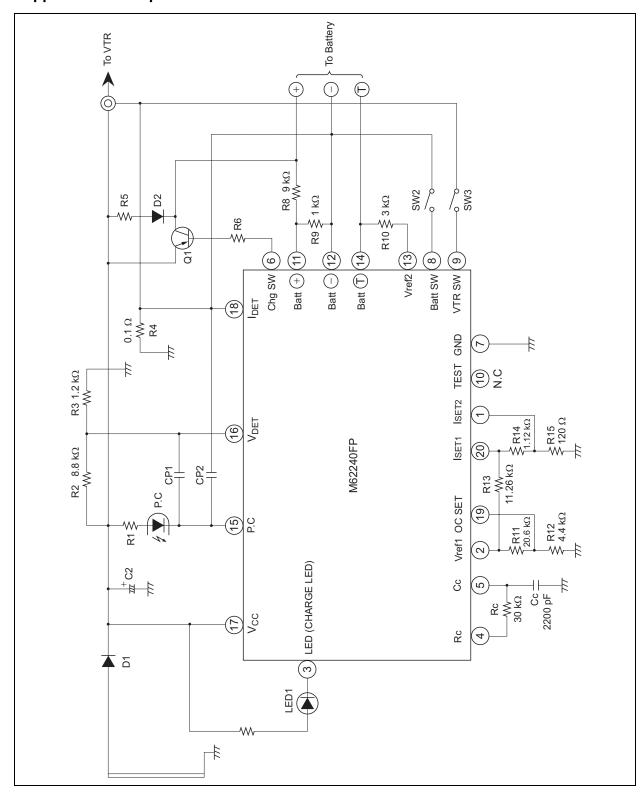
Control Section

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Range of input voltage	V _{IN}	0	_	V _{CC}	V	
Input bias current	I _{Bias}	-1	_	_	PA	
P.C output low voltage	V_{PCL}	_	0.3	0.6	V	$I_{P.C} = 10 \text{ mA}$

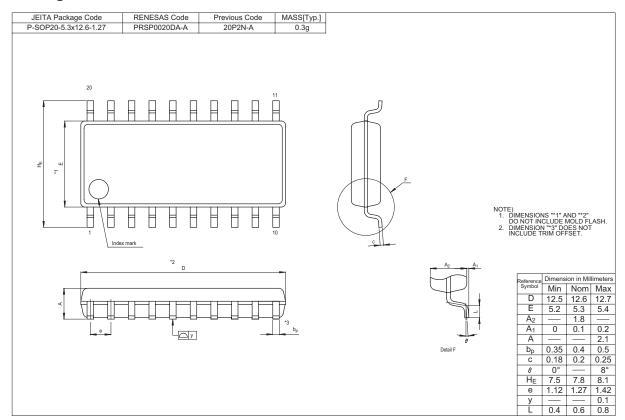
Each SW Detection Terminal

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Batt SW terminal flow out	I _{BattSW}	-240	-140	-80	PA	$V_{CC} = 7 V$,
current						V _{BattSW} = 0 V
Batt SW terminal threshold	V _{THBatt}	3.0	4.0	5.0	V	$V_{CC} = 7 \text{ V}$
voltage						
VTR SW terminal flow out	I _{VTRSW}	-240	-140	-80	PA	$V_{CC} = 7 V$,
current						$V_{CC} = 7 \text{ V},$ $V_{VTRSW} = 0 \text{ V}$
VTR SW terminal threshold	V_{THVTR}	3.0	4.0	5.0	V	V _{CC} = 7 V
voltage						

Internal Voltage Set-up


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Set-up output voltage at VTR mode	V_{VTR}	828	864	900	mV	
Set-up output voltage at charge mode	V _{CHG}	1.21	1.26	1.30	V	
I _{SET1} set-up voltage	V _{ISET1}	124.8	130	135.2	mV	When quick charging
I _{SET2} set-up voltage	V _{ISET2}	11.52	12.0	12.48	mV	When trickle charging
OC SET set-up voltage	V _{OCSET}	211.2	220	228.8	mV	When VTR mode
Voltage at the start of quick charging	V _{CHG}	0.40	0.54	0.68	V	
Over-voltage set-up voltage	V _{OVP}	0.91	0.95	0.99	V	
-' V detection set-up voltage	V- v	70	100	130	mV	After initialization timer has passed
Temperature detection set-up voltage	V _{VTHH1}	0.91	0.97	1.01	V	Temperature at the start of charging
Over-heating detection set-up voltage	V _{O/H}	0.82	0.86	0.90	V	Charge stop temperature

Internal Voltage Set-up


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Oscillation frequency	fosc	9.42	10.24	11.06	kHz	Rc = 30 k: ,
						Cc = 2200 pF
Initialization timer 1	Tm1	18.4	20.0	21.6	m	Battery voltage < 5 V
Initialization timer 2	Tm2	4.6	5.0	5.4	m	Battery voltage t 5 V
Safety timer 1	Tms1	4.6	5.0	5.4	h	When quick charging
Safety timer 2	Tms2	4.6	5.0	5.4	h	When trickle charging
Over-current detection time	Toc	9.2	10.0	10.8	S	When VTR mode

Note: Each timer is set at an oscillation frequency of 10.24 kHz.

Application Example

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes in the respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of waspons of mass and included in this document such as product data, diagrams, and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required to such as a few such as a such

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510