

Zero-IF Tuner IC for Digital Satellite Broadcast

CXD2832ER

Description

The CXD2832ER is an IC developed for direct orthogonal detection of 1st IF signal (1 to 2 GHz) from RF converter block in a digital satellite broadcast receiver system.

The CXD2832ER incorporates all the functions (LNA RF gain control amplifier, oscillator circuit, and other RF circuits, a baseband LPF, baseband gain control amplifier, tuning PLL) required for a satellite broadcast tuner.

Applications

- Digital TV
- STB for digital satellite broadcasting
- BD recorder

Features

- ◆ Low noise figure typ. 5 dB
- Low power consumption: 400 mW (Typ.) (Includes internal LNA circuit)
- Clock output for a demodulator LSI
- Input pin for controlling of power saving mode
- ◆ Small package: 28 pin VQFN 5 mm × 5 mm (0.5 mm pitch)

Absolute Maximum Ratings

 Supply voltage 	AVdd, DVdd	–0.3 to +3.6	V	(Ta = 25 °C)
 Storage temperature 	Tstg	–55 to +150	°C	

Operating Conditions

 Supply voltage 	AVdd, DVdd	2.375 to 3.465	V	
 Operating temperature 	Topr1	-20 to +85	°C	(AVDD, DVDD ≤ 2.8 V)
 Operating temperature 	Topr2	-20 to +75	°C	(AVDD, DVDD > 2.8 V)
Allowable power dissipation	Pd	2.2	W	$(30 \text{ mm} \times 60 \text{ mm}, \text{t} = 1.0 \text{ mm}, \text{mounted on 2 layer board})$

Note) This IC has pins whose electrostatic discharge strength is weak as the high-frequency process is used. Handle the IC with care.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Basic Specifications

Receiving frequency range	950 to 2150	MHz
Input level range (Embedded LNA active)	-85 to -10	dBm
Power supply voltage	2.5/3.3	V
Standard baseband output level	0.7	Vp-p
Tuning frequency step (PLL comparison frequency)	1	MHz
Baseband bandwidth	5 to 36 (1 MHz STEP)	MHz
Clock frequency	16/24/27	MHz

1. Pin Configuration and Block Diagram

Description of Block Diagram

The block names shown in the block diagram above have the following functions.

Reference OSC	Crystal oscillation circuit for reference clock
Serial I/F	Interface block for 2-wire serial bus
PLL	Tuning PLL
Prescaler	PLL fixed divider
VCO	VCO circuit for local signal
Divider	Frequency divider for local signal
IQ Generator	Frequency divider for IQ signal
LNA	Low Noise Amplifier
RF VGA	Gain control amplifier for RF signal
IQ Mixer	Quadrature demodulator (Mixer circuit)
VGA	Gain control amplifier for baseband signal
Buffer	Output buffer circuit for baseband signal

2. Pin Description and Input/Output Pin Equivalent Circuit

(Pin voltage shows typical DC voltage value when AGCI = 0 V)

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description
1	GPIO	0/1.9	6 DVDD PLLREG 5 1 + + + + + + + + + + + + + + + + + + +	General purpose output
2	DGND	0		GND Pin for PLL and logic circuits
3, 4	XTO XTI	0.6 0.6	$\begin{array}{c} 6 \\ \hline 0 \\ \hline$	Crystal oscillator connection for reference clock. When it is used as external clock input instead of crystal connection, please use XTI pin as clock input, and connect XTO to GND via capacitance.
5	PLLREG	1.9	6 DVDD 5 830 Ω 830 Ω 15 kΩ 2 DGND	External capacitor connection pin for regulator of PLL circuit. Please connect GND via capacitor of 1 uF or more.
6	DVdd	2.5		PLL and logic power supply
7	СР	0.9	6 DVDD PLLREG 5 7 W W C 7 W C 2 DGND	Charge pump output for tuning PLL

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description		
8	VCOREG	1.9	6 DV _{DD} 8 4 15 kΩ 9 VCOGND	External capacitor connection pin for regulator of VCO circuit. Please connect GND via capacitor of 1 µF or more.		
9	VCOGND	0		GND for VCO		
10	POWER_SAVE	0/2.5/3.3	10 500 Ω 10 100 kΩ 2 DGND	Power save control pin. Crystal oscillator stops and internal circuit changes to power saving mode when High.		
11	TEST	1.0	16 AVDD RFREG 15 10 kΩ 11 H-W- 10 kΩ 12 RFGND	Test pin No connect		
12	RFGND	0		GND for RF circuits		
13	RFIN	0.9	16 AVDD 13 RFREG 15 13 RFGND	Input for RF signal		
14	VREF18	1.8	$\begin{array}{c} 16 \\ \hline AV_{DD} \\ \hline 1 \hline 1$	Connecting capacitor for internal reference voltage. Please connect GND via capacitor of 1 µF or more.		

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description
15	RFREG	2.0	10 kΩ 12 RFGND	External capacitor connection pin for regulator of RF circuit. Please connect GND via capacitor of 1 μF or more.
16	AVdd	2.5		
17	AREG	2.0	10 kΩ ≥ 10 kΩ	External capacitor connection pin for regulator of base band circuit. Please connect GND via capacitor of 1 µF or more.
18	AGND	0		GND for analog circuits
19	AGCIN	0 to 3.3		Gain control pin for internal VGA circuits.
20 21 22 23	QOUTN QOUTP IOUTP IOUTN	1.0	$\begin{array}{c} 16 \\ \hline AV_{DD} \\ \hline 22(21) \\ \hline 23(20) \\ \hline 18 \\ \hline AGND \end{array} $	Baseband signal output

Pin No	Symbol	Pin voltage [V]	Equivalent circuit	Description		
24	RSTX			Negative logic hardware reset pin Hardware reset is necessary when power up.		
25	SCL		25 -500 Ω 	Clock input for serial bus		
26	SDA		26 500 Ω W C DGND	Data input and output for serial bus		
27	ADSL	0 to 2.2	6 DVDD PLLREG 5 30 kΩ 27 W-C 5 90 kΩ 2 DGND	Serial bus slave address setting		
28	REFOUT		6 DVDD PLLREG 5 28 W + 20 DGND	Reference clock signal output		

3. Electrical Characteristics Measurement Circuit

Measurement circuit for single-end output.

4. Electrical Characteristics

4-1. DC and analog characteristics

See the Electrical Characteristics Measurement Circuit on page 8 Circuit voltage = 2.5 V, Ta = 25 °C

Unless otherwise specified the measuring condition is RF frequency = 2150 MHz, full gain (AGCI = 0 V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit		
Circuit current-1	IDD-1	Current at DVDD pin	48	60	70	mA		
Circuit current-2	IDD-2	Current at AVDD pin	72	97	125	mA		
Circuit current-3	IDD-3	Current at AVDD pin when internal LNA bypassed	61	79	105	mA		
Power save current 1	PSIDD-1	DVDD pin when clock is disabled		1	3	mA		
Power save current 2	PSIDD-2	AVDD pin when LNA is enabled	14	27	40	mA		
Power save current 3	PSIDD-3	AVDD pin when LNA is disabled	3	9	20	mA		
SDA, SCL, RSTX, POWER_SAV	/E pin							
High level input voltage	VIH		2.3		3.6	V		
Low level input voltage	VIL		GND		1	V		
SDA pin	SDA pin							
Low level output voltage	VOL1	Sink current: 3 mA	GND		0.4	V		
GPIO pin								
High level output voltage	VPH	Source current: 3 mA	1.7	1.9		V		
Low level output voltage	VPL	Sink current: 3 mA		0.0	0.2	V		
Drive current	IGD	Source/Sink current: 3 mA			3	mA		
AGCIN pin								
Input voltage range	VIAH		0		3.6	V		
Input current	ILAH	AGCIN = 3.3 V			10	μΑ		
		•		-	-			
Input current of RSTX pin	ILRH				10	μA		
Input current of POWER_SAVE	ILPH	Input voltage = 3.3 V			10	μA		

Unless otherwise specified, AGCIN voltage that gives 0.7 Vp-pd differential output level

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Input loval	RFIL1	Internal LNA enabled	-85		-10	dBm
	RFIL2	Internal LNA bypassed	-75		0	dBm
	VIQ1	Differential output*1			1.5	Vp-pd
	VIQ2	Single-end output ^{*1}			1	Vp-p
IQ phase error	EPH	When RF input level is -40 dBm	-3.0	0	+3.0	deg
IQ amplitude error	EAMP	When RF input level is -40 dBm	-1.0	0	+1.0	dB
Noice figure	NF1	Internal LNA enabled		5	8	dB
Noise figure		Internal LNA bypassed		10	15	dB
DE insut	VSWR1	Internal LNA enabled		2	2.5	_
KF IIIput	VSWR2	Internal LNA bypassed		3	4.5	
VCO phase noise	PN1	When RF input level is -40 dBm fRF = 2150 MHz 100 kHz offset		-89	-85	dBc/Hz
	PN2	10 kHz offset		-86	-83	dBc/Hz
	PN3	1 kHz offset		-83	-80	dBc/Hz
IIP3	IIP3L	Internal LNA enabled When desired signal input level is -20 dBm. Calculated from IM3 measurement result by 2 signals, fLo + 5 MHz, fLo + 7 MHz		9		dBm
	IIP3R	Internal LNA bypassed Same measurement condition as IIP3L		12		dBm
IIP2	IIP2L	Internal LNA enabled Calculates from IM2 by interference signal 1 of 1040 MHz -20 dBm and 1100 MHz -20 dBm when setting desired signal fRF = 2140 MHz -20 dBm		14		dBm
	IIP2R	Internal LNA bypassed Same measurement condition as IIP2L		30		dBm
RF Local Leak	LOL	Local OSC leak to RFIN	—		-65	dBm
PLL Reference Leak	REFL		—	-65	-50	dBc
LPF attenuation 1	LPFC1	Attenuation at LPF setting value (fc)	8	5	1	dB
LPF attenuation 2	LPFC2	Attenuation at twice frequency of LPF setting.	20	30	40	dB
REFOUT Level	ROL	1 kΩ loaded	0.3	0.6	0.8	Vp-p
REFOUT maximum load	ROD				20	pF
XTI nin innut level	VIXI1	When using as external input (under DVpd = 0 V)	0	_	0.70	Vp-p
	VIXI2	When using as external input (under DV _{DD} = 2.5 V)	0.35	0.65	1.50	Vp-p
XI pin input allawable jitter	JIT				10	ps
XI pin capacitance	CXI				5	pF

^{*1} IQ output level is defined with the output level that gives IM3 35 dB or more. IM3 measurement condition is same as IIP3.

4-2. Electrical Characteristics (Logic block)

(Circuit voltage = 2.5 V, Ta = 25 °C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL clock frequency	fscL		0		400	kHz
Start - Hold time	thd:sta		600			ns
Stop - Setup time	tsu:sto		600			ns
Bus free time between "STOP" condition and "START" condition	t BUF		1300			ns
Data - Setup time	tsu:dat		100			ns
High hold time	tнigн		600			ns
Data - Hold time	thd:dat		0		900	ns
Low hold time	tLOW		1300			ns
Start - Setup time	tsu:sta		600			ns
Rise time	tr				300	ns
Fall time	tf				300	ns
Spike pulse width	tsp				50	ns
Capacitive load of bus line	Cb				400	pF
Hardware reset pulse width	thr	Measured at Pin 24 (RSTX)	1			ms

 $\label{eq:thd:stat} \begin{array}{l} \mbox{tHD:STA} = \mbox{Hold time (repeated) START condition} \\ \mbox{t.OW} = \mbox{LOW period of the SCL clock} \\ \mbox{tHD:DAT} = \mbox{Data hold time} \end{array}$ tsu:DAT = Data setup time tHIGH = HIGH period of the SCL clock HIGH PERIOD PERIOD OF THE SCL CLOCK tsU:STA = Setup time for a repeated START condition tsUF = Bus free time between a STOP and START condition tsU:STO = Setup time for STOP condition tr = Rise time of both SDA and SCL signals tr = Fall time of both SDA and SCL signals

* When SCL falls, it means START condition if SDA is "0".

 * When SCL rises, it means STOP condition if SDA is "1".

5. Power-on sequence

The sequence from power-on to hardware reset is below.

Set RSTX low level for more than 1 ms or more after stability time of the crystal oscillation.

It is no problem which AVDD (Pin 16) or DVDD (Pin 6) start up first.

The communication of 2way serial bus is available after 50 μs after canceling H/W reset.

6. Description of Operation

6-1. RF part

The signal input to RFIN is converted to baseband I-Q signals by I-Q local signal which is generated by PLL circuit and output through buffer amplifier.

LNA : Single input internal LNA which input impedance is about 75 $\boldsymbol{\Omega}$

RFVGA : In this block, RF gain control is performed.

This block has BPF characteristics to improve immunity to out-band interferer.Center frequency and gain of BPF should be optimized by register F_CTL/G_CTL based on tuning frequency. The following settings are recommended.

When using internal LNA

frf < 975	F_CTL = 11100 G_CTL = 001
$975 \leq frf < 1050$	F_CTL = 11000 G_CTL = 010
$1050 \le frf < 1150$	F_CTL = 10100 G_CTL = 010
$1150 \le frf < 1250$	F_CTL = 10000 G_CTL = 011
$1250 \leq frgmed relation from 1250$	F_CTL = 01100 G_CTL = 100
$1350 \leq frf < 1450$	$F_CTL = 01010 G_CTL = 100$
$1450 \leq frgmmode{frg$	$F_CTL = 00111 G_CTL = 101$
$1600 \leq frf < 1800$	F_CTL = 00100 G_CTL = 110
$1800 \leq f\text{RF} < 2000$	F_CTL = 00010 G_CTL = 110
$2000 \leq frf$	F_CTL = 00000 G_CTL = 111

When using external LNA

frf < 975	F_CTL = 11100 G_CTL = 001
$975 \leq frf < 1050$	F_CTL = 11000 G_CTL = 010
$1050 \le frf < 1150$	F_CTL = 10100 G_CTL = 010
$1150 \leq frf < 1250$	F_CTL = 10000 G_CTL = 011
$1250 \leq frf < 1350$	F_CTL = 01100 G_CTL = 100
$1350 \leq fRF < 1450$	F_CTL = 01010 G_CTL = 100
$1450 \leq fRF < 1600$	F_CTL = 00111 G_CTL = 101
$1600 \leq frf < 1800$	F_CTL = 00100 G_CTL = 010
$1800 \leq frf < 2000$	F_CTL = 00010 G_CTL = 001
$2000 \leq frf$	F_CTL = 00000 G_CTL = 000

LPF: The LPF incorporates a 5th order low pass filter.

VGA: Base band gain control amplifier, it includes DC feed back circuit which reject DC offset. This DC feedback circuit requires no external capacitor, as it includes capacitor inside IC.

- Buffer: This output circuit outputs the baseband signal to a demodulator IC.
 - It can be used as a single output IC by termination one side of the differential outputs by the recommended registor and capacitor.

6-2. 2-wire Serial Bus Interface Block

The internal registers of this IC are set via the 2-wire serial bus. Registers that can be set via the bus have an 8-bit sub address, and this IC uses the sub addresses 00h to 7Fh. (See page 16 and onward for a detailed description of the registers.) Continuous write and read is possible to registers with continuous sub addresses. There is no limit to the number of words that can be continuously written or continuously read.

Write to read-only registers is ignored.

This serial bus can be set regardless of reference clock operation. In addition, the operation speed is also independent of the clock frequency.

Slave Address Selection

Four different slave addresses can be selected by the voltage applied to the ADSL pin to support mounting of multiple tuner ICs.

WRITE mode that sets various data and READ mode that transmits the IC internal register data to the host side are switched by setting the LSB (R/W bit) of the address byte.

Slave addresses

MA1, MA0 : Portion that changes according to the ADSL pin voltage R/W : WRITE mode and READ mode switching

R/W = "0" WRITE mode R/W = "1" READ mode

ADSL pin voltage	MA1	MA0			
0 to 0.19 V	0	0			
0.4 to 0.6	0	1			
0.8 to 1.1	1	0			
Open	inhibit				
1.71 to 2.2	1	1			

ADSL Pin voltage is generated by the connection of resistor below.

Slave Address	ADSL Pin voltage VADSL [V]	Connection of resistor	Recommended value of REXT [Ω]		
C0	0 to 0.19	Connect to GND	0		
C2	0.4 to 0.6	Connect to GND via REXT	10k		
C4	0.8 to 1.1	Connect to GND via REXT	47k		
	1.71 to 2.2	Connect to PLLREG	0		
C6	1.71 to 2.2	Connect to VDD via REXT (in case of VDD = 2.5 V)	22k or 33k		
	1.71 to 2.2	Connect to VDD via REXT (in case of VDD = 3.3 V)	47k or 68k		

Writing and reading procedure

Writing register is performed as follows.

Write slave address -> Write desired sub address -> Write register setting value

This procedure is also applied to continuous write mode that performs continuous write to consecutive sub addresses.

Reading register is performed in 1-byte units as follows.

Write slave address -> Write desired sub address -> Repeated start condition -> Write slave address -> Data read

Repeated start condition can be substituted by "Stop condition -> Start condition".

This procedure is also applied to continuous read mode that perfprms continuous read form consecutive sub address.

Description of SCL and SDA Signal during Bus Communication

Start/Stop/Repeated start conditions signals are as shown in the figure below see the specifications for the detail timing.

7. Detailed Description of Registers

Sub	Desister serve			Bit position								
address	Register name	BIT	RW	7	6	5	4	3	2	1	0	Description
00	P_COUNT_H[7:0]	8	RW	0	0	0	0	1	0	0	0	PLL main counter frequency division ratio
01	P_COUNT_L[3:0]	4	RW	1	0	0	1					setting P_COUNT = {P_COUNT_H[7:0], P_COUNT_L [3:0]} The settings to the internal counters are executed when they are written to sub address 03h. * Initial value: 12'd137
	S_COUNT[2:0]	3	RW					1	0	0		PLL swallow counter frequency division ratio setting * Initial value: 3'd4
	RESERVE	1	RW								0	RESERVE
02	K_COUNT_H[7:0]	8	RW	0	0	0	0	0	0	0	0	Test register.
03	K_COUNT_L[7:0]	8	RW	0	0	0	0	0	0	0	0	Always set to 00h The values of sub Address 00 to 01 (P_COUNT/S_COUNT) are set when 00h is written to sub address 03h. So write 00h to 03h continuously when set reception frequency.
04	MDIV_SW	1	RW	0								When MDIV_SW is enabled, the frequency division ratio between the VCO and the MIXER changes from 1/2 to 1/4. 0: Thru.(1100 MHz \leq fRF) 1: 1/2(950 MHz \leq fRF \leq 1100 MHz)
	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
05	CALIB_START	1	RW	0								Calibration start bit. When "1" is set, the CALIB sequence starts and the optimum VCO selection, LPF cut off frequency and CP current setting value are calculated. Always execute calibration when changing the tuning data. 1: Calibration start; this bit automatically returns to "0" after calibration ends.
	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
06	REF_R[7:0]	8	RW	0	0	0	1	1	0	1	1	PLL comparison frequency setting register. *Initial value: 8'd27
07	FIN[7:0]	8	RW	0	0	0	1	1	0	1	1	Reference clock frequency (crystal oscillation frequency) setting register This is used as the frequency division ratio for the system clock (1 MHz) required by the logic block. *Initial value: 8'd27
08	LT_EN	1	RW	1								Test register Please set 0.
	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
09	G_CTL[2:0]	3	RW	0	0	0						RFVGA gain control This must be set according to the reception frequency. Max. gain 000 Min. gain 111
	F_CTL[4:0]	5	RW				0	0	0	0	0	RFVGA peak frequency control This must be set according to the reception frequency. (See page 13) 0000: high freq., 11111: low freq

The data noted for each register are the initial values for this IC.

Sub	Degister nome	Dit				В	it po	siti	on			Description
address	Register hame	ы	RVV	7	6	5	4	3	2	1	0	Description
0A	OUT_LEVEL[1:0]	2	RW	0	0							IQ output gain and output type selection. In case of using single end output, set 2'b01 or 2'b11. 00: Default (Differential output) 01: Single end output (+ 4.4 dB) 10: Reserve 11: Single end output (-2.4 dB)
	HP_MODE	1	RW			0						Pass bandwidth control of DC feedback 0: normal 1: Low
	GAIN_STEP[1:0]	2	RW				0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
0B	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
0C	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
00	PORT	1	RW	0								RESERVE
00	RESERVE[6:0]	7	RW		0	0	0	0	0	0	0	RESERVE
	REFOUTEN	1	RW	1								REFOUT circuit enable * 1: Enable 0: Disable
0E	XOSC_SEL[4:0]	5	RW		1	1	1	1	1			Crystal oscillator drive current setting register, 1 LSB = 25 μ A (Max: 775 μ A). The crystal oscillator is stopped and external clock input is available by setting 5'b0_0000. * Initial value: 5'b1_1111 (775 μ A)
	RESERVE[1:0]	2	RW							0	0	RESERVE
0F	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
10	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	PS_EN	1	RW	0								Power save setting 0: Reception (Normal status) 1: Powe saving
11	PS_XOSC_EN	1	RW		0							Crystal oscillator operating setting when PS_EN = H 0: Stop crystal oscillation 1: Continuos oscillation
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
	LNASW	1	RW	0								Internal LNA setting 0: Internal LNA ON 1: LNA bypassed
	LNA_IADJ	1	RW		0							Test register
	IT_MODE	1	RW			1						Test register
	RFREG_VADJ[1:0]	2	RW				0	0				Test register
12	LNA_EN	1	RW						1			Enabler of LNA circuit 0: LNA Disable 1: LNA Enable
	RFVGA_EN	1	RW							1		Enabler of RFVGA circuit. 0: RFVGA Disable 1: RFVGA Enable
	RFREG_EN	1	RW								1	Enabler of regulator for RF circuits. 0: RFREG Disable 1: RFREG Enable
13	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
14	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE

Sub	Desister nome	D:+				Bi	it po	sitio	on			Description
address	Register hame	ы	RVV	7	6	5	4	3	2	1	0	Description
	BBTEST_EN[1:0]	2	RW	0	0							Test register
15	MIX_EN	1	RW			1						Enabler of Mixer circuits. 0: Mixer Disable 1: Mixer Enable
	RESERVE[4:0]	5	RW				0	0	0	0	0	RESERVE
	OUT_EN_MODE	1	RW	0								Output mute setting during LPF calibration 0: Mute after power up only 1: Mute while every calibration sequence.
16	BB_EN	1	RW		1							Enabler of Base band circuits 0: Disable 1: Enable
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
17	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
18	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
19	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
1A	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	FRAC_MODE	1	RW	0								Test register
	ORDER	1	RW		1							Test register
1B	ACC_RST	1	RW			0						Test register
	DITHER_EN	1	RW				1					Test register
	RESERVE[3:0]	4	RW					0	0	0	0	RESERVE
	CP_I_CAL_EN	1	RW	1								Test register
1C	VCO_CAL_EN	1	RW		1							Test register
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
1D	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
1E	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
15	PFD_EN	1	RW	1								Test register
	PFD_TUP	1	RW		0							Test register
	PFD_TDN	1	RW			0						Test register
1F	PFD_MODE[1:0]	2	RW				0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
	ODBUF_EN[1:0]	2	RW	0	0							Test register
	MONI_EN	1	RW			0						Test register
20	CLK_SRC_DIV_EN	1	RW				1					Test register
20	DSM_CLK_EN	1	RW					1				Test register
	DSM_CLK_REF_SEL	1	RW						1			Test register
	RESERVE[1:0]	2	RW							0	0	RESERVE
21	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
22	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE

Sub	Deviator			Bit position								
address	Register name	BIt	RVV	7	6	5	4	3	2	1	0	Description
	REFOUT_BUF_CURR	2	RW	0	0							Driving current setting of REFOUT 11: 1.25 mA 10: 750 μA 01: 500 μA *00 : 1 mA
23	REFOUT_AMP_ZL	2	RW			0	0					Load register setting of REFOUT 11: 1.12 kΩ 10: 1.25 kΩ 01: 1.75 kΩ * 00:1.5 kΩ
	REFOUT_AMP_CURR	2	RW					0	0			Current setting for REFOUT amplifier circuit 11: 900 μA 10: 700 μA 01: 300 μA 00: 500 μA
	RESERVE[1:0]	2	RW							0	0	RESERVE
	DIV_RST	1	RW	0								Test register
24	CP_EN	1	RW		1							Test register
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
25	CP_I_H[7:0]	8	RW	0	0	1	1	1	1	0	0	Test register
26	CP_I_L[1:0]	2	RW	0	0							
20	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
	IREF_EN	1	RW	1								PLL block and crystal oscillator circuit reference current source enable. The crystal oscillator circuit is stopped by setting this to disable. * 1: Enable 0: Disable
27	CPDA_OUT_EN	1	RW		0							Test register
	CP_AMP_EN	1	RW			1						Test register
	R2_BANK[1:0]	2	RW				0	0				Test register
	C2_BANK[1:0]	2	RW						0	0		Test register
	RESERVE	1	RW								0	RESERVE
	VCO_M_EN	1	RW	0								Test register
	VCO_L_EN	1	RW		1							Test register
28	VCO_CSW[4:0]	5	RW			1	1	1	1	1		Test register
	RESERVE	1	RW								0	RESERVE
	VCO_RSW[3:0]	4	RW	0	1	1	1					Test register Set to initial value
	R2_RANGE	1	RW					0				Test register
29	DIV_BIAS[1:0]	2	RW						0	0		Test register
	MDIV_EN	1	RW								1	Enabler of circuit between VCO and MIXER * 1: Enable 0: Disable

Sub	Register name	Bit	PW/	, Bit position								Description
address	Register hame	ы		7	6	5	4	3	2	1	0	Description
	VCO_BUF_M_EN	1	RW	0								Test register
	VCO_BUF_L_EN	1	RW		1							Test register
	VCOBUF_EN	1	RW			1						Test register
	DMPS_EN	1	RW				1					Enabler of Dual-Modulus divide * 1: Enable 0: Disable
2A	CML2CMOS_EN	1	RW					1				Enabler of buffer circuit of PLL circuit. * 1: Enable 0: Disable
	VCO_FC_CLK_EN	1	RW						0			Test register
	IQGEN_EN	1	RW							1		Enabler of IQ Generator * 1: Enable 0: Disable
	RESERVE	1	RW								1	RESERVE
2B	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
2C	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	GPIO[1:0]	2	RW	0	0							GPIO output setting 2'b00: GPIO OFF 2'b01: GPIO ON
2D	MONI_SEL[3:0]	4	RW			0	0	0	0			Test register * Initial value: 4'd0
	RESERVE[1:0]	2	RW							0	0	RESERVE
2E	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
2F	RESERVE[7:0]	8	RW	0	0	0	0	0	0	0	0	RESERVE
	RST_L_DTCT	1	RW	0								Test register
30	LCK_DTCT_CYCLE[1: 0]	2	RW		0	0						Test register
	UNLCK_DTCT_CYCL E[1:0]	2	RW				0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
	FREQCTR_START	1	RW	0								Test register
31	FC_CLK_DIV_TEST[1: 0]	2	RW		0	0						Test register
	RESERVE[4:0]	5	RW				0	0	0	0	0	RESERVE
32	FVCO_H[7:0]	8	RW	0	1	0	0	0	1	0	0	Teet register
33	FVCO_L[4:0]	5	RW	1	1	0	0	0				
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
34	KC0[7:0]	8	RW	0	0	0	0	1	0	1	0	CP current automatic calculation parameter. Normally use the initial value. * Initial value: 8'd10
35	KC1[7:0]	8	RW	0	0	0	1	1	1	1	0	CP current automatic calculation parameter. Normally use the initial value. * Initial value: 8'd30
36	KBW[7:0]	8	RW	0	1	1	1	1	0	0	0	CP current automatic calculation parameter. Normally use the initial value. * Initial value: 8'd120

Sub	Register name	Bit	P\M			Bi	it po	sitio	on			Description
address	Register name	Dit	1	7	6	5	4	3	2	1	0	
	LPF_ADJ_EN	1	RW	1								LPF calibration enabler 0: Calibration disable 1: Normal condition(Using calibration)
37	LPFADJ_TG_FREQ[5: 0]	6	RW		0	0	0	0	1	1		LPF cutoff frequency setting (MHz) Set in binary. Valid range is d5 to d36 d37 to d62 is forbidden. d63 set the maximum cutoff frequency.
	LPFADJ_MANUAL_E N	1	RW								0	Test register
38	LPFADJ_MANUAL[7:0]	8	RW	0	0	0	0	0	0	0	0	Test register
39	LPF_CTL[7:0]	8	R	0	0	0	0	0	0	0	0	Test register
ЗA	FREQ_CTR_H[7:0]	8	R	0	0	0	0	0	0	0	0	Test register
	FREQ_CTR_L[4:0]	5	R	0	0	0	0	0				
3B	VCO_CAL_ERR	1	R						0			VCO calibration error flag * 0: — 1: Error
	RESERVE[1:0]	2	RW							0	0	RESERVE
	CAL_FVCO_ENX	1	RW	0								Test register
3C	TEST_SEL[3:0]	4	RW		0	0	0	0				Test register
	RESERVE[2:0]	3	RW						0	0	0	RESERVE
	CLK1M_SILENT_EN	1	RW	0								Test register
3D	VCO_CLK_REF_SEL	1	RW		0							Test register
	RESERVE[5:0]	6	RW			0	0	0	0	0	0	RESERVE
7E	EXTRA1[7:0]	8	RW	0	0	0	0	0	0	0	0	Test register
7F	VER[3:0]	4	R	0	1	0	1					IC version indication
/٢	CHIP_TYPE[3:0]	4	R					0	0	0	1	IC internal chip version indication

8. Tuning Procedure

8-1. Main Counter and Swallow Counter Settings

The VCO tuning frequency is obtained by the following formulas.

 $\label{eq:RF} \begin{array}{l} \mathsf{RF} = \mathsf{fosc}/4 = 1/2 \times \mathsf{fref} \times (\mathsf{8P} + \mathsf{S}) \quad (\mathsf{950} \leq \mathsf{RF} < \mathsf{1100} \; \mathsf{MHz}) \quad \mathsf{MDIV}_\mathsf{SW} = 1\mathsf{'b1} \\ \mathsf{RF} = \mathsf{fosc}/2 = \mathsf{fref} \; \times (\mathsf{8P} + \mathsf{S}) \; (\mathsf{1100} \leq \mathsf{RF} \leq \mathsf{2150} \; \mathsf{MHz}) \quad \mathsf{MDIV}_\mathsf{SW} = 1\mathsf{'b0} \\ \end{array}$

RF : Tuning frequency fosc : Oscillation frequency of VCO circuit

fref : Reference frequency

REF_R should be the value which satisfy the equation below {crystal oscillation frequency}/REF_R = 1 MHz

P: Main counter frequency division ratio

S: Swallow counter frequency division ratio

9. Example of Representative Characteristics

10. Application Circuit

11. Package outline

(Unit: mm)

Note:Terminal burr height 0.05mm MAX.

SONY CODE	V Q F N - 2 8 P - 0 2
JEITA CODE	
JEDEC CODE	

TERMINAL SECTION

PACKAGE	STRUCTURE
PACKAGE MATERIAL	EPOXY RESIN
TERMINAL TREATMENT	

TERMINAL TREATMENT	PALLADIUM PLATING
TERMINAL MATERIAL	COPPER ALLOY
PACKAGE MASS	0.0629