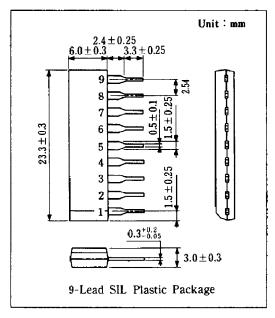
AN5733

Dual Attenuator

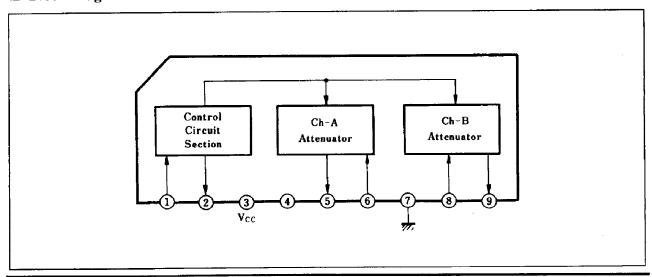
Outline


The AN5733 is an integrated circuit designed for dual attenuator and is in SIL package. With this, sets can be made compact.

■ Features

- Output DC control
- Linear Output response
- Two attenuators controlled by one volume control
- Large attenuation
- Small crosstalk and level difference between the two channels

Use

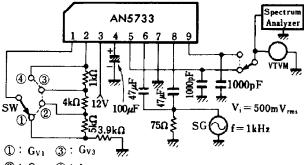

• Volume control, etc.

■ Pin

Pin No.	Pin Name
1	Control Voltage
2	Ref. Voltage
3	Vcc
4	Decoupling
5	Ch.A Output
6	Ch.A Input
7	GND .
8	Ch.B Input
9	Ch.B Output

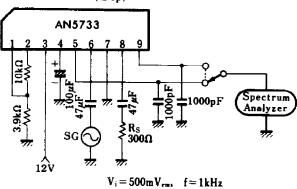
Block Diagram

Panasonic

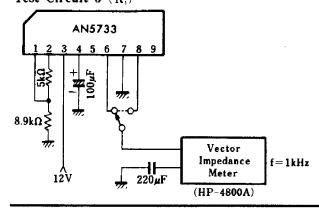

■ Absolute Maximum Ratings (Ta=25°C)

Item		Symbol	Rating	Unit	
Supply Voltage		V_{cc}	14.4	V	
Power Dissipation		PD	197	mW	
Temperature	Operating Ambient Temperature	T_{opr}	$-20 \sim +70$	°C	
	Storage Temperature	Tstg	$-40 \sim +150$	°C	

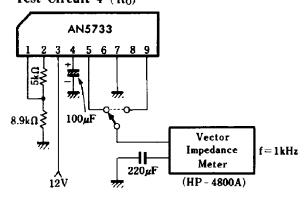
■ Electrical Characteristics ($V_{CC}=12V$, $T_a=25^{\circ}C$)


Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Total Circuit Current	Itot			9.5	11.3	13.5	mA
Voltage Gain (1)	Gv ₁ v ₁	1	f=1kHz, V _i =500mV _{rms} At VR max.	4	6	7.6	dB
Voltage Gain Difference Between Channels (1)	⊿ Gv(1)	1		-1.5		1.5	dB
Voltage Gain (2)	Gv(2)	1		-2	0	2.2	dB
Voltage Gain Difference Between Channels (2)	4Gv(2)	1		$\overline{-2}$,,,,,,,	2	dB
Voltage Gain (3)	Gv(3)	1		-20	-16	-12	ďВ
Voltage Gain Difference Between Channels (3)	⊿ Gv(3)	1		2.5		2.5	dB
Attenuation (max.)	Au	1		75			dB
Separation	Sep	2		70			dB
Input Resistance	Ri	3	C 11 77		25	-	kΩ
Output Resistance	Ro	4	f=1kHz		1.7		kΩ
Ripple Rejection Ratio	RR			34			dB

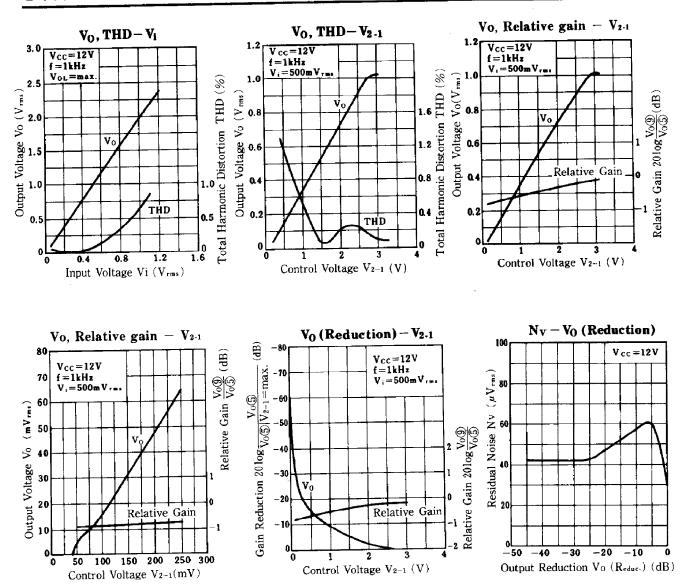
Test Circuit 1 $(G_{V(1-3)}, \Delta G_{V(1-3)}, Att)$

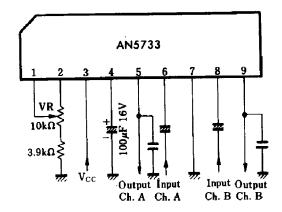

- $②: G_{V2} \quad \textcircled{4}: Att$
 - Circuit voltage gain: Gain between Pins (5) and (6)
 - Voltage gain difference between channels : Output level difference between Pins ① and ⑤

Test Circuit 2 (Sep)



• Level difference between Pins (5) and (9)


Test Circuit 3 (R_i)


Test Circuit 4 (Ro)

Panasonic

Application Circuit

Panasonic