RENESAS

M61303FP

I²C BUS Controlled 3channel Video Pre-amplifier for LCD Display Monitor

REJ03F0198-0200 Rev.2.00 Sep 14, 2006

Description

M61303FP is integrated circuit for LCD display monitor. It is controlled I²C BUS and band wide is 180 MHz.

It includes OSD blanking, OSD mixing, wide band amplifier, main/sub contrast, main/sub brightness, and 2 input routes.

 V_{CC} voltage is 5 V and flat package is used.

Then it is the suitable to LCD monitor.

Features

•	Frequency ba	and width: RGB	180 MHz (at -3 dB)
		OSD	80 MHz
•	Input: RGB	input dynamic range	Max 1 V_{P-P} positive
	2 inp	ut routes is changed by	I ² C BUS
	RGB	OSD	3.5 V_{P-P} to 5.0 V_{P-P} (positive)
	OSD	BLK	3.5 V_{P-P} to 5.0 V_{P-P} (positive)
	Output: RGB		$2.2 V_{P-P} (Max)$
	OSD		$2.0 V_{P-P} (Max)$
	Outp	ut dynamic range	0.5 to 2.2 V
	It car	n drive 14 pF	
•	Contrast:	Both of sub and main	contrast are controlled by I ² C BUS (8 bit).
		Control range:	-15 dB to +15 dB.
•	Brightness:	Both of sub and main	contrast are controlled by I ² C BUS (8 bit).
	-	Control range:	0.5 V to 2.2 V.
•	OSD adjust:	2 control ranges (Max	$1 V_{P-P}$ or Max 2 V_{P-P}) are able to be changed by I^2C BUS.

Recommended Operating Conditions

Supply voltage range:	4.7 V to 5.3 V
Rated supply voltage:	5.0 V
Consumption of electricity:	800 mW

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

			$(\mathrm{Ta}=25^{\circ}\mathrm{C})$
Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	6.0	V
Power dissipation	Pd	2900	mW
Ambient temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +150	°C
Recommended supply	Vopr	5.0	V
Voltage range	Vopr'	4.7 to 5.3	V

BUS Control Table

(1) Slave address:

D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	= 88H

(2) Each function's sub address:

		Sub	Data Byte										
Function	Bit	Add.	D7	D6	D5	D4	D3	D2	D1	D0			
Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00			
			0	1	0	0	0	0	0	0			
Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10			
			1	0	0	0	0	0	0	0			
Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20			
			1	0	0	0	0	0	0	0			
Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30			
			1	0	0	0	0	0	0	0			
Main bright	8	04H	A47	A46	A45	A44	A43	A42	A41	A40			
			1	0	0	0	0	0	0	0			
Sub bright R	8	05H	A57	A56	A55	A54	A53	A52	A51	A50			
			1	0	0	0	0	0	0	0			
Sub bright G	8	06H	A67	A66	A65	A64	A63	A62	A61	A60			
			1	0	0	0	0	0	0	0			
Sub bright B	8	07H	A77	A76	A75	A74	A73	A72	A71	A70			
			1	0	0	0	0	0	0	0			
OSC level	4	08H					A83	A82	A81	A80			
			0	0	0	0	0	0	0	0			
INPUT SW	1	09H								A90			
			0	0	0	0	0	0	0	0			
OSD SW	1	0AH								AA0			
			0	0	0	0	0	0	0	0			

I²C BUS Control Section SDA, SCL Characteristics

Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	V _{IL}	-0.5	1.5	V
Max. input HIGH voltage	V _{IH}	3.0	5.5	V
SCL clock frequency	f _{SCL}	0	100	kHz
Time the bus must be free before a new transmission can start	t _{BUF}	4.7	_	μS
Hold time start condition. After this period the first clock pulse is generated	t _{HD:STA}	4.0	_	μS
The LOW period of the clock	t _{LOW}	4.7	_	μS
The HIGH period of the clock	t _{HIGH}	4.0	—	μS
Set up time for start condition (Only relevant for a repeated start condition)	t _{SU:STA}	4.7	—	μS
Hold time DATA	t _{HD:DAT}	0	—	μS
Set-up time DATA	t _{SU:DAT}	250	—	ns
Rise time of both SDA and SCL lines	tr	_	1000	ns
Fall time of both SDA and SCL lines	tf	_	300	ns
Set-up time for stop condition	t _{SU:STO}	4.0		μS

Electrical Characteristics

If SW connect is not designated RGB Input SW: SW (30, 35, 40) = a (b) SW (32, 37, 42) = b (a), SW (2, 5, 9, 16, 19, 20, 24, 25, 26, 27) = a

 $(V_{CC} = 5 V, Ta = 25^{\circ}C)$

			Limits						BUS CTL (H)											
						Test	RGB		00H	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	Bo
Item	Symbol	Min.	Тур.	Max.	Unit	(s)	Signal	SW Connect	Cont	Cont	Cont	Cont 3	brt	brt 1	brt 2	brt 3	Adj	SW	SW	mark
Circuit current1	I _{CC1}	—	155	185	mA	I _A	—	RGB Input SW = a (All)	A6H 166	A6H 166	A6H 166	A6H 166	00H 0	00H 0	00H 0	00H 0	00H 0	—	-	-
Output dynamic range	Vomax	2.2	—	—	V _{P-P}	OUT	SG2	_	Ļ	ļ	Ļ	Ļ	vari- able	vari- able	vari- able	vari- able				-
Maximum input1	Vimax1	1.0	—	—	V _{P-P}	IN OUT	SG2 Amplitude Variable	,	7FH 127	7FH 127	7FH 127	7FH 127	40H 64	7FH 127	7FH 127	7FH 127				—
Maximum input2	Vimax2	1.0	—	—	V _{P-P}	IN OUT	SG2 Amplitude Variable	SW (30, 35, 40) = b SW (32, 37, 42) = a	ļ	ļ	I.	ļ								-
Maximum gain	GV	11.9	13.9	15.9	dB	OUT	SG1	_	FFH 255	FFH 255	FFH 255	FFH 255								-
Relative maximum	ΔGV	0.8	1.0	1.2	—	—			-	—	-	—								
Main contrast control	VC1	6.4	7.9	9.4	dB	OUT	SG1		C8H 200	7FH 127	7FH 127	7FH 127								_
characteristics1	1/00	2.2	4.1	5.0	AD		801		64H									\square	\square	
control characteristics2	VC2	2.0	4.1	5.5	uВ	001	301		100											-
Main contrast control	VC3	0.2	0.4	0.6	V _{P-P}	OUT	SG1		00H 0											_
characteristics3 Sub contrast	VSC1	6.3	7.8	9.4	dB	OUT	SG1		7FH	C8H	C8H	C8H						\square		
characteristics1	1/000						0.01		12/	641	614	640								
control characteristics2	VSC2	2.6	4.3	6.0	aв	001	SG1			100	100	100								-
Sub contrast control	VSC3	0.2	0.4	0.6	V _{P-P}	OUT	SG1			00H 0	00H 0	00H 0								_
characteristics3 Main/sub	VMSC	1.7	2.0	2.3	V _{P-P}	OUT	SG1		A6H	A6H	A6H	A6H						$\left \right $		_
characteristics						0.17		•	100	ACH	100	ACU	754							
control characteristics1	VB1	1.3	1.7	2.0	V	001	_	SW = a (All)	166	166	166	166	127							-
Main brightness control	VB2	0.4	0.6	0.8	V	OUT	—						00H 0							_
characteristics2 Sub brightness	VSB1	1.7	2.2	2.6	V	OUT							7FH	FFH	FFH	FFH		\square		
control characteristics1	1/050	4.0	47	0.0		OUT							127	255	255	255				
control characteristics2	VSB2	1.3	1.7	2.0	v	001	_							127	127	127				-
Sub brightness control	VSB3	0.7	1.0	1.3	V	OUT	—							00H 0	00H 0	00H 0		\square		
characteristics3	EC1	2.0		2.0	ap		602	*	Vari-				♦	7EH	7FH	7FH	♦	•	†	refer-
characteristics1 (50 MHz-2 V _{P-P})	FCI	-3.0		3.0	uв	001	363		able				64	127	127	127	0			ence
Frequency relative characteristics1 (180 MHz-2 Vpp)	∆FC1	-1.0	0	1.0	dB	_	—		A6H 166											
Frequency characteristics2	FC2	-4.0	-3.0	1.0	dB	OUT	SG3													
Frequency relative characteristics2	∆FC2	-1.0	0	1.0	dB															
(50 MHZ-2 V _{P-P}) Frequency characteristics3 (180 MHz-1)/	FC3	-1.0	0	1.0	dB	OUT	SG3													
Frequency relative characteristics3 (180 MHz-1 V ₂₋₂)	∆FC3	-1.0	0	1.0	dB				37H 55											
Frequency characteristics4 (180 MHz-2 V _{p.p} -Cap)	FC4	-4.0	-3.0	1.0	dB	OUT	SG3	SW (2, 5, 9) = b												
Frequency relative characteristics4	∆FC4	-1.0	0	1.0	dB				A6H 166											
(1	1	L	1	I	1		1	1		11		1	1	1	11			1	I V

Rev.2.00 Sep 14, 2006 page 7 of 24

Electrical Characteristics (cont.)

		l 1	_imits	;						BUS CTL (H)													
						Test	RGB			00H	01	н	02H	03H	04H	051	+ 0	D6H	07H	08H	09H	0AH	Re-
ltem	Symbol	Min.	Tvp.	Max.	Unit	Point (s)	Signal	SW Co	nnect	Main Cont	t Su	ub ont	Sub Cont	Sub Cont	Main brt	Sul	b S	Sub brt	Sub brt	OSD Adj	Input SW	OSD SW	mark
Crosstalk1	INCT1	-	-35	-30	dB	OUT (2)	SG3	SW (42) = b, 0	Other SW = a	A6H	A	6H	2 A6H	3 A6H	40H	7FI	1 7	2 7FH	3 7FH	00H	00H	_	refer-
input1-2 50 MHz-1						OUT (5)		SW (37) = b, 0	Other SW = a	166	16	66	166	166	64	12	7 1	127	127	0	0		ence
Crosstalk1'	INCT1'	-	-15	-10	dB	OUT (9) OUT (2)	SG3	SVV (32) = b, 0	Other SVV = a			+	Т			+	+	\mathbf{T}^{\dagger}	Т			\mathbf{T}	
input1-2 50 MHz-1						OUT (5)																	
Crosstalk2			_35	_30	dB	OUT (9)	563	SW (40) = b.	Other SW = a	\square		+	+		\square	+	+	+	+	\square	01H	\square	$\left \right $
input1-2 50 MHz-2		_	-35	-30	uD	OUT (5)	565	SW (35) = b, 0	Other SW = a												1		
Crosstalk?'	INICTO		15	10	dB	OUT (9)	563	SW (30) = b, 0	Other SW = a			+	+		\square	+	+	+	+				+
input1-2 50 MHz-2		_	-15	-10	uD	OUT (5)	565																
Crosstalk1	CUCT4		25	20	٩D	OUT (9)	600	CW/ (40) b	04h an 01M/			+	+			$\left \right $	+	+	+			\square	\square
between RGB ch	CHCIT	_	-25	-20	иБ	001	363	SVV (42) = D, 0	Other Svv = a												_		
50 MHz-1			45	10	15	OUT	000					_	+			\square	_		_				
between RGB ch	CHCTT	-	-15	-10	aв	001	563																
180 MHz-1						0.17		1	<u> </u>				_				\perp						\square
between RGB ch	CHCT2	-	-25	-20	dB	OUT	SG3	SW (37) = b, 0	Other SW = a														
50 MHz-2																							
Crosstalk2'	CHCT2'		-15	-10	dB	OUT	SG3																
180 MHz-2																							
Crosstalk3	CHCT3	-	-25	-20	dB	OUT	SG3	SW (32) = b, 0	Other SW = a														
50 MHz-3																							
Crosstalk3'	CHCT3'	-	-15	-10	dB	OUT	SG3						Т					Π					
50 MHz-3																							
Pulse	Tr1	—	1.1	—	ns	OUT	SG1	_	_														
characteristics																							
Relative pulse	∆Tr1	-0.8	0.0	0.8	ns	—	_										╈						
characteristics																							
Pulse	Tf1	—	1.1	—	—	OUT	SG1						\top				╈	\uparrow					H
characteristics																							
Relative pulse	ΔTf1	-0.8	0.0	0.8	_		_					+					╈	\square					
characteristics																							
Pulse	Tr2	—	2.0	—	ns	OUT	SG1	SW (2, 5	5, 9) = b							Ħ		\uparrow					
characteristics																							
Relative pulse	∆Tr2	-0.8	0.0	0.8	ns	_	_	_	_							Ħ	+	\square					
characteristics																							
Pulse	Tf2	—	2.0	—	_	OUT	SG1	SW (2, 5	5, 9) = b			+	+				+	+	╈				
characteristics																							
Relative pulse	∆Tf2	-0.8	0.0	0.8	—	—	_	_	_			+	+				+						
characteristics																							
Clamp pulse	VthCP	1.5	2.0	2.5	V	OUT	SG1	-	_			+	+				+	+	+				—
threshold voltage												_	+			\square	_	+	_			\square	
minimum width	WCP	0.2	0.5	-	μS	001	SG1		_	🕴		,	ŧ	ł	🕴	🕴		¥	ŧ	♦		♦	_
OSD pulse	OTr	—	3.0	6.0	ns	OUT	_	SW (24, 25,	26, 27) = b	00H	00	н	00H	00H	40H	7Fi	1 7	7FH	7FH	0FH		00H	refer-
OSD pulse	OTf	_	3.0	6.0	ns					Ť		+	Ť	Ť	64	12	-	127	127	15	++	Ť	ence
characteristics Tf			0.0	0.0						۱t.		'	•	•		\square		\square		•		•	•
OSD adjust control	Oaj1	0	0	0.2	V _{P-P}	OUT	—			A6H	A6	H	A6H	A6H						00H		00H	-
OSD adjust control	Oaj2	0.9	1.2	1.5	V _{P-P}	OUT	_			T			Ť	Ť		Ħ	+			01H		00H	—
characteristics2												_	+			+	+	+	+	1		0	
relative	∆Oaj2	0.75	1.0	1.25	_	_	_													_		_	
characteristics2													+			\square	_	\downarrow	_				L
characteristics3	Uaj3	1.8	2.1	2.5	V _{P-P}		-													0FH		00H	
OSD adjust control	∆Oaj3	0.75	1.0	1.25	—	_	_			$ \uparrow$			Τ			$ \uparrow$		\uparrow			\square	Ĭ	-
characteristics3																							
OSD adjust control	Oaj4	0	0	0.2	V _{P-P}	OUT	—			$ \uparrow$	\top	\uparrow	\uparrow		$ \uparrow$	$ \uparrow$	+	\parallel		00H		01H	-
Characteristics4	OaiF	0.4	0.6	0.8	V		_			\parallel	+	+	+		\vdash	H	+	+	+	0	\square	1	
characteristics5	Jajo	0.4	0.0	0.0	VP-P															1		1	
OSD adjust control	∆Oaj5	0.75	1.0	1.25	_	—				ΙT						IT				—		-	-]
characteristics5									,	🕴		,	ł	•	+			↓	ŧ		↓		

Electrical Characteristics (cont.)

	Limits											E	SUS	CTL	(H)					
Item	Symbol	Min.	Тур.	Max.	Unit	Test Point (s)	RGB Input Signal	SW Connect	00H Main Cont	01H Sub Cont 1	02H Sub Cont 2	03H Sub Cont 3	04H Main brt	05H Sub brt 1	06H Sub brt 2	07H Sub brt 3	08H OSD Adj	09H Input SW	0AH OSD SW	Re- mark
OSD adjust control characteristics6	Oaj6	0.9	1.2	1.5	V _{P-P}	OUT	_	SW (24, 25, 26, 27) = b	A6H 166	A6H 166	A6H 166	A6H 166	40H 64	7FH 127	7FH 127	7FH 127	0FH 15	—	01H 1	-
OSD adjust control relative characteristics6	∆Oaj6	0.75	1.0	1.25			_	V									—		—	—
OSD BLK characteristics	OBLK	0.0	0.1	0.3	V _{P-P}	OUT	—	SW (24, 25, 26) = a SW (27) = b												—
OSD BLK relative characteristics	∆OBLK	-0.15	0.0	0.15	V	_		V												-
OSD input threshold voltage	VthOSD	2.0	2.5	3.0	V	OUT	—	SW (24, 25, 26, 27) = a									0FH 15		00H 0	—
OSD BLK input threshold voltage	VthBLK	2.0	2.5	3.0	V	OUT	SG1	SW (27) = b	ļ											—
Pin 19 Input current H	I _{19H}	-1.0	0.0	—	μΑ	I ₁₉	—	SW (19) = b V19 = 5 V	-	-	-	—	—	—	—	-	-	_	—	—
Pin 19 Input current L	I _{19L}	-	0.6	2.0	μA	I ₁₉	—	SW (19) = b V19 = 0 V												—
Pin 20 Input current H	I _{20H}	-1.0	0.0	—	μA	I ₂₀	—	SW (20) = b V20 = 5 V												—
Pin 20 Input current L	I _{20L}	-	0.6	2.0	μA	I ₂₀	—	SW (20) = b V20 = 0 V												—
Pin 24, 25, 26 Input current H	I _{OSDH}	-2.0	-1.3	_	mA	I ₂₄ I ₂₅ I ₂₆	_	SW (24, 25, 26) = b VOSD = 5 V												—
Pin 24, 25, 26 Input current L	I _{OSDL}	_	1.3	2.0	mA	I ₂₄ I ₂₅ I ₂₆		SW (24, 25, 26) = b VOSD = 0 V												
Pin 27 Input current H	I _{27H}	-2.0	-1.3	—	mA	I ₂₇	—	SW (27) = b V27 = 5 V												—
Pin 27 Input current L	I _{27L}	—	1.3	2.0	mA	I ₂₇	—	SW (27) = b V27 = 0 V												-

Electrical Characteristics Test Method

I_{CC1} Circuit Current1

Measuring conditions are as listed in supplementary Table.

Measured with a current meter at test point I_A .

Vomax Output Dynamic Range

Decrease main bat or sub bat gradually, and measure the voltage when the bottom of waveform output is distorted. The voltage is called VOL.

Next, increase V30 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH. Voltage Vomax is calculated by the equation below:

Vomax = VOH - VOL

Vimax1 Maximum Input1

Increase the input signal (SG2) at Input1 amplitude gradually, starting from 700 mV_{P-P}. Measure the amplitude of the input signal when the output signal starts becoming distorted.

Vimax2 Maximum Input2

Increase the input signal (SG2) at Input amplitude gradually, starting from 700 mV_{P-P}. Measure the amplitude of the input signal when the output signal starts becoming distorted.

GV Maximum Gain

Input SG1, and read the amplitude output at OUT (2, 5, 9). The amplitude is called VOUT (2, 5, 9). Maximum gain GV is calculated by the equation below:

$$GV = 20\log \frac{VOUT}{0.7}$$
 (dB)

∆GV Relative Maximum Gain

Relative maximum gain ΔGV is calculated by the equation below:

 Δ GV = VOUT (2) / VOUT (5), VOUT (5) / VOUT (9), VOUT (9) / VOUT (2)

VC1 Main Contrast Control Characteristics1

Measuring the amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9).

$$VC1 = 20\log \frac{VOUT}{0.7} \quad (dB)$$

VC2 Main Contrast Control Characteristics2

Measuring condition and procedure are the same as described in VC1.

VC3 Main Contrast Control Characteristics3

Measuring condition and procedure are the same as described in VC1.

VSC1 Sub Contrast Control Characteristics1

Measuring condition and procedure are the same as described in VC1.

VSC2 Sub Contrast Control Characteristics2

Measuring condition and procedure are the same as described in VC1.

VSC3 Sub Contrast Control Characteristics3

Measuring condition and procedure are the same as described in VC1.

VMSC Main/sub Contrast Control Characteristics

Measuring condition and procedure are the same as described in VC1.

VB1 Main Brightness Control Characteristics1

Measure the DC voltage output at OUT (2, 5, 9). The measured value is called VB1.

VB2 Main Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

VSB1 Sub Brightness Control Characteristics1

Measuring condition and procedure are the same as described in VB1.

VSB2 Sub Brightness Control Characteristics2

Measuring condition and procedure are the same as described in VB1.

VSB3 Sub Brightness Control Characteristics3

Measuring condition and procedure are the same as described in VB1.

FC1 Frequency Characteristics1 (50 MHz-2 V_{P-P})

First, SG3 to 1 MHz is as input signal.

Control the main contrast in order that the amplitude of sine wave output is 2.0 V_{P-P} . Control the brightness in order that the bottom of sine wave output is 1.0 V. By the same way, measure the output amplitude when SG3 to 50 MHz is as input signal. The measured value is called VOUT (2, 5, 9).

Frequency characteristics FC1 (2, 5, 9) is calculated by the equation below:

 $FC1 = 20log \frac{VOUT V_{P-P}}{Output amplitude when inputted SG3 (1 MHz): 2.0 V_{P-P}} \quad (dB)$

△FC1 Frequency Relative Characteristics1 (180 MHz-2 V_{P-P})

Relative characteristics Δ FC1 is calculated by the difference in the output between the channels.

FC2 Frequency Characteristics2 (50 MHz-2 V_{P-P})

Measuring condition and procedure are the same as described in FC1, expect SG3.

△FC2 Frequency Relative Characteristics2 (50 MHz-2 V_{P-P})

Relative characteristics Δ FC2 is calculated by the difference in the output between the channels.

FC3 Frequency Characteristics3 (180 MHz-1 V_{P-P})

SG3 to 1 MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is $1.0 V_{P-P}$. By the same way, measure the output amplitude when SG3 to 180 MHz is as input signal.

△FC3 Frequency Relative Characteristics3 (180 MHz-1 V_{P-P})

Relative characteristics Δ FC3 is calculated by the difference in the output between the channels.

FC4 Frequency Characteristics4 (180 MHz-2 V_{P-P}-Cap)

Change OUT SW from a to b. Measuring condition and procedure are the same as described in FC1.

△FC4 Frequency Relative Characteristics4 (180 MHz-2 V_{P-P}-Cap)

Relative characteristics Δ FC4 is calculated by the difference in the output between the channels.

INCT1 Crosstalk1 Input1-2 50 MHz-1

Input SG3 (50 MHz) to pin 42 only, set Input SW of I²C BUS to 0 and then measure the waveform amplitude output at OUT (2). The measured value is called VOUT (2). On equal terms set Input SW of I²C BUS to 1. And then measure the waveform amplitude output at OUT (2)'. Crosstalk INCT1 is calculated by the equation below:

$$INCT1 = 20log \frac{VOUT(2)'}{VOUT(2)} \qquad (dB)$$

Similarly measure the waveform amplitude output at OUT (5) when signal input only pin 37 and OUT when signal input only pin 32 and calculate crosstalk.

INCT1' Crosstalk1' Input1-2 50 MHz-1

Measuring condition and procedure are the same as described in INCT1, expect SG3 to 180 MHz.

INCT2 Crosstalk2 Input1-2 50 MHz-1

Input SG3 (50 MHz) to pin 40 only, set Input SW of I²C BUS to 1 and then measure the waveform amplitude output at OUT (2). The measured value is called VOUT (2). On equal terms set Input SW of I²C BUS to 0. And then measure the waveform amplitude output at OUT (2)'. Crosstalk INCT2 is calculated by the equation below:

$$INCT2 = 20\log \frac{VOUT (2)'}{VOUT (2)} \qquad (dB)$$

Similarly measure the waveform amplitude output at OUT (5) when signal input only pin 35 and OUT when signal input only pin 30 and calculate crosstalk.

INCT2' Crosstalk2' Input1-2 50 MHz-1

Measuring condition and procedure are the same as described in INCT2, expect SG3 to 180 MHz.

CHCT1 Crosstalk1 between RGB Ch 50 MHz-1

Input SG3 (50 MHz) to pin 42 only, and then measure the waveform amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9). Crosstalk CHCT1 is calculated by the equation below:

$$CHCT1 = 20log \frac{VOUT (5, 9)}{VOUT (2)} \qquad (dB)$$

CHCT1' Crosstalk1' between RGB Ch 180 MHz-1

Measuring condition and procedure are the same as described in CHCT1, expect SG3 to 180 MHz.

CHCT2 Crosstalk2 between RGB Ch 50 MHz-2

Input SG3 (50 MHz) to pin 37 only, and then measure the waveform amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9). Crosstalk CHCT2 is calculated by the equation below:

$$CHCT2 = 20\log \frac{VOUT(2, 9)}{VOUT(5)} \qquad (dB)$$

CHCT2' Crosstalk2' between RGB Ch 180 MHz-2

Measuring condition and procedure are the same as described in CHCT2, expect SG3 to 180 MHz.

CHCT3 Crosstalk3 between RGB Ch 50 MHz-3

Input SG3 (50 MHz) to pin 32 only, and then measure the waveform amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9). Crosstalk CHCT3 is calculated by the equation below:

CHCT3 =
$$20\log \frac{VOUT(2, 5)}{VOUT(9)}$$
 (dB)

CHCT3' Crosstalk3' between RGB Ch 50 MHz-3

Measuring condition and procedure are the same as described in CHCT3, expect SG3 to 180 MHz.

Rev.2.00 Sep 14, 2006 page 12 of 24

Tr1 Pulse Characteristics1 Tr1

Control the contrast in order that the amplitude of output signal is 2.0 V_{P-P}.

Control the brightness in order that the Black level of output signal is 1.0 V.

Measure the time needed for the input pulse to rise from 10% to 90% (Trin) and for the output pulse to rise from 10% to 90% (Trout) with an active probe.

Pulse characteristics Tr1 is calculated by the equations below:

 $Tr1 = \sqrt{(Trin)^2 - (Trout)^2}$ (ns)

∆Tr1 Relative Pulse Characteristics1 Tr1

Relative Pulse characteristics $\Delta Tr1$ is calculated by the equation below:

 Δ Tr1 = VOUT (2) - VOUT (5), VOUT (5) - VOUT (9), VOUT (9) - VOUT (2)

Tf1 Pulse Characteristics1 Tf1

Measure the time needed for the input pulse to fall from 90% to 10% (Tfin) and for the output pulse to fall from 90% to 10% (Tfout) with an active probe.

Pulse characteristics Tf1 is calculated by the equations below:

 $Tf1 = \sqrt{(Tfin)^2 - (Tfout)^2} \quad (ns)$

∆Tf1 Relative Pulse Characteristics1 Tf1

Relative Pulse characteristics Δ Tf1 is calculated by the equation below:

∆Tf1 = VOUT (2) – VOUT (5), VOUT (5) – VOUT (9), VOUT (9) – VOUT (2)

Tr2 Pulse Characteristics2 Tr2

Change SW (2, 5, 9) from (a) to (b). Measuring condition and procedure are the same as described in Tr1.

∆Tr2 Relative Pulse Characteristics2 Tr2

Measuring condition and procedure are the same as described in Δ Tr1, except of SW (2, 5, 9) condition.

Tf2 Pulse Characteristics2 Tf2

Change SW (2, 5, 9) from (a) to (b). Measuring condition and procedure are the same as described in Tf1.

∆Tf2 Relative Pulse Characteristics2 Tf2

Measuring condition and procedure are the same as described in Δ Tf1, except of SW (2, 5, 9) condition.

Rev.2.00 Sep 14, 2006 page 13 of 24

VthCP Clamp Pulse Threshold Voltage

Reduce the SG4 input level gradually from 5.0 V_{P-P} , monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable.

WCP Clamp Pulse Minimum Width

Decrease the SG4 pulse width gradually from $0.5 \,\mu$ s, monitoring the output. Measure the SG4 pulse width (a point of 1.5 V) when the output pedestal voltage turn decrease with unstable.

OTr OSD Pulse Characteristics Tr

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics Tf

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oaj1 OSD Adjust Control Characteristics1

Measure the amplitude output at OUT (2, 5, 9). The measured value is called VOUT (2, 5, 9), and is treated as Oaj1.

Oaj2 OSD Adjust Control Characteristics2

Measuring condition and procedure are the same as described in Oaj1.

∆Oaj2 OSD Adjust Control Relative Characteristics2

Relative characteristics $\Delta Oaj2$ is calculated by the equation below:

∆Oaj2 = VOUT (2) / VOUT (5), VOUT (5) / VOUT (9),

VOUT (9) / VOUT (2)

Oaj3 OSD Adjust Control Characteristics3

Measuring condition and procedure are the same as described in Oaj1.

△Oaj3 OSD Adjust Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta Oaj2$.

Oaj4 OSD Adjust Control Characteristics4

Measuring condition and procedure are the same as described in Oaj1.

Oaj5 OSD Adjust Control Characteristics5

Measuring condition and procedure are the same as described in Oaj1.

△Oaj5 OSD Adjust Control Relative Characteristics5

Measuring condition and procedure are the same as described in $\Delta Oaj2$.

Oaj6 OSD Adjust Control Characteristics6

Measuring condition and procedure are the same as described in Oaj1.

△Oaj6 OSD Adjust Control Relative Characteristics6

Measuring condition and procedure are the same as described $\Delta Oaj2$.

OBLK OSD BLK Characteristics

Measuring the amplitude output at OUT (2, 5, 9). The measured value is called OBLK.

∆OBLK OSD BLK Relative Characteristics

Relative OSD BLK characteristics $\triangle OBLK$ is calculated by the equation below:

 $\triangle OBLK = VOUT (2) / VOUT (5),$ VOUT (5) / VOUT (9), VOUT (9) / VOUT (2)

VthOSD OSD Input Threshold Voltage

Reduce the SG5 input level gradually, monitoring output. Measure the SG5 level when the output reaches 0 V. The measured value is called VthOSD.

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG5 at the time.

Monitoring to output signal, decreasing the level of SG5. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.

I_{19H} Pin 19 Input Current H

Supply 5 V to V19, and then measure input current into pin 19.

I_{19L} Pin 19 Input Current L

Supply 0 V to V19, and then measure input current into pin 19.

I_{20H} Pin 20 Input Current H

Supply 5 V to V20, and then measure input current into pin 20.

I_{20L} Pin 20 Input Current L

Supply 0 V to V20, and then measure input current into pin 20.

IOSDH Pin 24, 25, 26 Input Current H

Supply 5 V to V (24, 25, 26) and then measure input current into pin (24, 25, 26)

IOSDL Pin 24, 25, 26 Input Current L

Supply 0 V to V (24, 25, 26) and then measure input current into pin (24, 25, 26)

I27H Pin 27 Input Current H

Supply 5 V to V27, and then measure input current into pin 27.

I27L Pin 27 Input Current L

Supply 0 V to V27, and then measure input current into pin 27.

Input Signal

Note: fH = 30 kHz

Test Circuit

Typical Characteristics

Rev.2.00 Sep 14, 2006 page 18 of 24

Application Method

Clamp Pulse Input

Clamp pulse width is recommended

above 15 kHz, 1.0 µs

above 30 kHz, 0.5 µs

above 64 kHz, 0.3 μs.

The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the figure shown right is recommended.

Notice of Application

- 1. Recommended pedestal voltage of IC output signal is 1 V.
- 2. This IC has 2 Input routes. When the 2 Input signal input at different timing, clamp pulses which synchronize with selected signals is needed. In this case, it is necessary to change clamp pulses by the outside circuit.
- 3. Connect coupling cap (0.01 μ) as nearer as can to V_{CC} pin. If not response of waveform is getting wrong.

Application Example

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
1	R V _{CC2}	5		
4	G V _{CC2}			
8	B V _{CC2}			
2	OUTPUT (R)	—	$\phi \phi \phi$	Pull down about 1 k for
5	OUTPUT (G)			valance control Tr and Tf
9	OUTPUT (B)			
			20 Ω	
3	R GND 2	GND		
6	G GND 2			
10	B GND 2			
13	Analog Gnd	GND		—
14	Analog V _{CC}	5		
16	Clamp Pulse	—	$\varphi \varphi \varphi$	more than 200 ns
	In			
			≥ ^{21 K}	
				2.5 to 5 V
				Input at low impedance.
			\uparrow 2.0 V \ddagger 2.0 V \ddagger \bigcirc 0.2 mA	
			m m m m m	

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
18	Digital GND	GND		
19	SDA			SDA for I ² C (Serial data line) VTH = 2.3 V
20	SCL			SCL of I ² C (Serial clock line) VTH = 2.3 V
21	Digital V _{CC}	5V		—
24 25 26	B OSD IN G OSD IN R OSD IN			Input pulses

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
27	Name OSD BLK IN	DC Voltage (V)	Peripheral Circuit 27 $1k$ $= 2.5 \vee$ $2.5 \vee$ $2.5 \vee$ $=$	Function Input pulses Input pulses Input pulses Input pulses Input pulses Input pulses Input pulses Input pulses Input pulses Input pulses
			<i>זאר דאר דאר דאר דאר</i> 1.5 mA	
29 34 39	B GND 1 G GND 1 R GND 1	GND		_
30 32 35 37 40 42	B INPUT 2 B INPUT 1 G INPUT 2 G INPUT 1 R INPUT 2 R INPUT 1	2.1 V	30	Clamped to about 2.1 V due to clamp pulses from pin 16. Input at low impedance.
31 36	B V _{CC1} G V _{CC1}	5	—	_
7 11 12 15 17 22 23 28 33 38	NC			Connect GND for radiation of heat

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. Sumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- A second product on the information published by Refress Technology Corp. by Various means, including the Refress Technology Corp. Semiconductor home page (http://www.renessa.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
 Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use
- product contained herein for any specific purposes, such as apparatus or systems for transportation, venicular, metricar, acrospace, nector, or analysis of specific use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com