

Features

- Single power supply: 2.4V~3.3V
- Low standby current: 1µA (Typ.) at V_{DD}=3V
- Speaker or direct piezo application
- Sound output: one Main Tone plus two Fighting Sounds (1,2)

General Description

The HT2830 is a CMOS LSI chip designed for use in sound effect products. It is a body structure including tone circuit, noise circuit, an updown counter, and other control logic to generate various sounds such as JET plane, motorcycle, helicopter, train, and so forth. Fea-

- Two direct LED drive outputs (The flash rate depends on the sound speed)
- Option mode selection: normal mode or auto mode (bonding option)
- Minimum external components

tures from the customer's sound samples can be analyzed and programmed into an internal ROM by changing a mask layer during device fabrication. The HT2830 is suitable for various toy applications.

Pin Assignment

1			1			
OSC1	1	18	DOSC2			
TEST4□	2	17	TEST1			
SWAB	3	16				
SWB□	4	15	□о∪т			
SWUP	5	14				
SWDN	6	13	LED1			
vss⊏	7	12	🗅 ТЕЅТЗ			
TEST6	8	11				
SWA□	9	10	TEST5			
HT2830						
– 18 DIP						

1

Block Diagram

Pad Assignment

Chip size: $97 \times 107 \text{ (mil)}^2$

* The IC substrate should be connected to VDD in the PCB layout artwork.

9th July '97

Pad Coordinates

ad Coord	linates				Unit: mil
Pad No.	X	Y	Pad No.	X	Y
1	-36.13	24.57	12	36.01	-40.46
2	-36.13	16.62	13	36.01	-33.96
3	-36.13	-26.09	14	36.01	-20.66
4	-36.13	-33.96	15	36.01	-0.88
5	-36.13	-40.46	16	36.01	24.24
6	-29.70	-40.46	17	36.01	40.46
7	-23.24	-40.46	18	-0.58	40.46
8	-13.35	-40.46	19	-20.13	40.46
9	13.46	-40.46	20	-28.24	40.46
10	20.66	-40.46	21	-36.25	40.46
11	27.18	-40.46			

Pad Description

Pad No.	Pad Name	I/O	Description
1	SWAB	Ι	Fighting sound 1/2 toggle input, low active
2	SWB	Ι	Fighting sound 2 input, low active
3	SWUP	Ι	Main tone up input, low active
4	SWDN	Ι	Main tone down input, low active
5	VSS		Negative power supply, GND
6	OPT1	Ι	Main tone option
7	TEST6	Ι	For IC test only
8	SWA	Ι	Fighting sound 1 input, low active
9	TEST5	Ι	For IC test only
10	OPT2	Ι	Normal mode/auto mode option
11	VDD		Positive power supply
12	TEST3	0	For IC test only
13	LED1	0	LED flash output
14	LED2	0	LED flash output
15	OUT	0	Sound output
16	OUT	0	Sound output, out of phase to pad 15
17	TEST1	0	For IC test only
18	OSC2	0	Oscillator output
19	OSC1	Ι	Oscillator input

3

Pad No.	Pad Name	I/O	Description
20	TEST2	0	For IC test only
21	TEST4	Ι	For IC test only
(1) OPT1:	Bond pad 5 \rightarrow	Ma	in Tone 1

(1) 01 11.	Dona pad 5	/	Main Tone I
	Bond pad 6	\rightarrow	Main Tone 2
(2) OPT2:	Bond pad 10	\rightarrow	Auto Mode
	Bond Pad 11	\rightarrow	Normal Mode

Absolute Maximum Ratings*

Supply Voltage0.3V to 5V	Storage Temperature50°C to 125°C
Input VoltageVSS-0.3V to VDD+0.3V	Operating Temperature0°C to 70°C

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damageto the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(Ta=25°C)

Symbol	Demonstern	Test Conditions			T	M	T
	Parameter	VDD	Conditions	win.	Typ.	Max.	Unit
V _{DD}	Operating Voltage			2.4	3	3.3	V
ISTB	Standby Current	3V		_	1	5	μΑ
I _{DD}	Operating Current	3V	No load			150	μΑ
Іон	OUT Source Current	3V	V _{OH} =2.5V	-2		_	mA
I _{OL1}	OUT Sink Current	3V	V _{OL} =0.5V	0.7			mA
IOL2	LED1 Sink Current	3V	V _{OL} =1V	8			mA
IOL3	LED2 Sink Current	3V	V _{OL} =1V	8			mA
V _{IH}	'H"Input Voltage	3V		2.4	_	_	v
V _{OL}	'L"Input Voltage	3V				0.6	V
Fosc	Oscillator Frequency		R _{OSC} =62kΩ		256		kHz

4

Timing Diagram & Application Circuit

• Normal mode (1)

5

• Normal mode (2)

6

• Normal mode (3)

7

• Auto mode (1)

9th July '97

• Auto mode (2)

Timing 1

Timing 2

9

B : Fighting Sound 2

Application Circuit (HT2830A — Jet Plane & Motorcycle)

• Jet plane sound: Normal mode (1) Example

* The IC substrate should be connected to VDD in PCB layout artwork.

Main Tone: Jet Plane Sound Fighting Sound 1: Machine Gun Fighting Sound 2: Missile

10

• Motorcycle sound: Normal mode (1) Example

* The IC substrate should be connected to VDD in PCB layout artwork.

Main Tone : Motorcycle Sound Fighting Sound 1 : Machine Gun Fighting Sound 2 : Missile

11

Application Circuit (HT2830B — Helicopter Sound)

* The IC substrate should be connected to VDD in PCB layout artwork.

9th July '97

Application Circuit (HT2830C — Train Sound)

* The IC substrate should be connected to VDD in PCB layout artwork.

9th July '97

Application Circuit (HT2830D — Jet Plane & Motorcycle)

• Jet plane sound: Normal mode (1) Example

* The IC substrate should be connected to VDD in PCB layout artwork.

Main Tone: Jet plane Sound Fighting Sound 1: Machine Gun Fighting Sound 2: Missile

Note: (1) The SWUP and SWDN keys are level hold trigger (2) Power on auto play

(3) No auto-up and auto-down function

14

• Motorcycle sound: Normal mode (1) Example

* The IC substrate should be connected to VDD in PCB layout artwork.

Main Tone: Motorcycle Sound Fighting Sound 1: Machine Gun Fighting Sound 2: Missile

Note: (1) The SWUP and SWDN keys are level hold trigger (2) Power on auto play

(3) No auto-up and auto-down function

9th July '97