

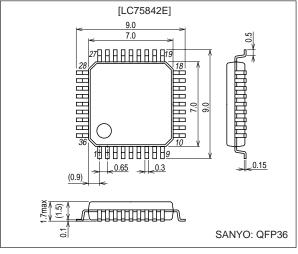
# LC75842E, LC75842M

# **General-Purpose 1/2 Duty LCD Display Driver**



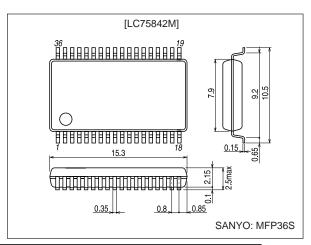
# Overview

The LC75842E and LC75842M are 1/2 duty general-purpose LCD display drivers for applications such as microprocessor-controlled electronic tuning. They can drive up to 54 segments directly.


# **Features**

- 1/2 duty, 1/2 bias drive of up to 54 segments
- Serial data input supports CCB\* format communication with the system controller.
- Backup function which is based on a power saving mode and all segments off functions that are controlled by serial data.
- High generality, since display data is displayed directly without decoder intervention.
- The display can be forced to the off state with the  $\overline{\text{INH}}$  pin.
- RC oscillator circuit
  - CCB is a trademark of SANYO ELECTRIC CO., LTD.
  - CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

# **Package Dimensions**


unit: mm

#### 3162C-QFP36



unit: mm

#### 3204-MFP36S

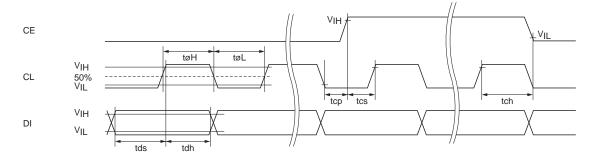


- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co.,Ltd. Semiconductor Company
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

# Specifications Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

| Parameter                   | Symbol              | Conditions                 | Ratings                       | Unit |
|-----------------------------|---------------------|----------------------------|-------------------------------|------|
| Maximum supply voltage      | V <sub>DD</sub> max | V <sub>DD</sub>            | -0.3 to +6.5                  | V    |
| Input voltage               | V <sub>IN</sub> 1   | CE, CL, DI, TNH            | -0.3 to +6.5                  | V    |
| Input voltage               | V <sub>IN</sub> 2   | OSC                        | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output voltage              | V <sub>OUT</sub>    | OSC, S1 to S27, COM1, COM2 | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| Output current              | I <sub>OUT</sub> 1  | S1 to S27                  | 100                           | μA   |
| Output current              | I <sub>OUT</sub> 2  | COM1, COM2                 | 1                             | mA   |
| Allowable power dissipation | Pd max              | Ta = 85°C                  | 100                           | mW   |
| Operating temperature       | Topr                |                            | -40 to +85                    | °C   |
| Storage temperature         | Tstg                |                            | -55 to +125                   | °C   |


# Allowable Operating Ranges at $Ta = -40 \ to \ +85^{\circ}C, \ V_{SS} = 0 \ V$

| Paramatar                        | Currelle el     | Conditions        | Ratings             |     |                     |      |
|----------------------------------|-----------------|-------------------|---------------------|-----|---------------------|------|
| Parameter                        | Symbol          | Conditions        | min                 | typ | max                 | Unit |
| Supply voltage                   | V <sub>DD</sub> | V <sub>DD</sub>   | 4.0                 | 5.0 | 6.0                 | V    |
| Input high level voltage         | V <sub>IH</sub> | CE, CL, DI, INH   | 0.8 V <sub>DD</sub> |     | 6.0                 | V    |
| Input low level voltage          | V <sub>IL</sub> | CE, CL, DI, INH   | 0                   |     | 0.2 V <sub>DD</sub> | V    |
| Recommended external resistance  | Rosc            | osc               |                     | 68  |                     | kΩ   |
| Recommended external capacitance | Cosc            | osc               |                     | 680 |                     | pF   |
| Guaranteed oscillator range      | fosc            | OSC               | 25                  | 50  | 100                 | kHz  |
| Low level clock pulse width      | t <sub>øL</sub> | CL: Figure 1      | 160                 |     |                     | ns   |
| High level clock pulse width     | t <sub>øH</sub> | CL: Figure 1      | 160                 |     |                     | ns   |
| Data setup time                  | t <sub>ds</sub> | CL, DI: Figure 1  | 160                 |     |                     | ns   |
| Data hold time                   | t <sub>dh</sub> | CL, DI: Figure 1  | 160                 |     |                     | ns   |
| CE wait time                     | t <sub>cp</sub> | CE, CL: Figure 1  | 160                 |     |                     | ns   |
| CE setup time                    | t <sub>cs</sub> | CE, CL: Figure 1  | 160                 |     |                     | ns   |
| CE hold time                     | t <sub>ch</sub> | CE, CL: Figure 1  | 160                 |     |                     | ns   |
| INH switching time               | t <sub>c</sub>  | ĪNH, CE: Figure 3 | 10                  |     |                     | μs   |

# **Electrical Characteristics** in the Allowable Operating Ranges

| Parameter                   | Symbol             | l Conditions                                                         |                       | Unit |     |      |
|-----------------------------|--------------------|----------------------------------------------------------------------|-----------------------|------|-----|------|
| Parameter                   | Symbol             |                                                                      | min                   | typ  | max | Unit |
| Hysteresis voltage          | V <sub>H</sub>     | CE, CL, DI, INH: V <sub>DD</sub> = 5.0 V                             |                       | 0.4  |     | V    |
| Input high level current    | I <sub>IH</sub>    | CE, CL, DI, INH: V <sub>I</sub> = 6.0 V                              |                       |      | 5.0 | μA   |
| Input low level current     | I <sub>IL</sub>    | CE, CL, DI, INH: V <sub>I</sub> = 0 V                                | -5.0                  |      |     | μA   |
| Output high level voltage   | V <sub>OH</sub> 1  | S1 to S27: I <sub>O</sub> = -10 μA                                   | V <sub>DD</sub> – 1.0 |      |     | V    |
| Output high level voltage   | V <sub>OH</sub> 2  | COM1, COM2: I <sub>O</sub> = -100 μA                                 | V <sub>DD</sub> – 0.6 |      |     | V    |
| Output low level voltage    | V <sub>OL</sub> 1  | S1 to S27: I <sub>O</sub> = 10 μA                                    |                       |      | 1.0 | V    |
| Output low level voltage    | V <sub>OL</sub> 2  | COM1, COM2: I <sub>O</sub> = 100 μA                                  |                       |      | 0.6 | V    |
| Output middle level voltage | V <sub>MID</sub> 1 | COM1, COM2: V <sub>DD</sub> = 6.0 V, I <sub>O</sub> = ±100 μA        | 2.4                   | 3.0  | 3.6 | V    |
| Output middle level voltage | V <sub>MID</sub> 2 | COM1, COM2: $V_{DD} = 4.0 \text{ V}$ , $I_{O} = \pm 100 \mu\text{A}$ | 1.4                   | 2.0  | 2.6 | V    |
| Oscillator frequency        | fosc               | OSC: $R_{OSC} = 68 \text{ k}\Omega$ , $C_{OSC} = 680 \text{ pF}$     | 40                    | 50   | 60  | kHz  |
| Current drain               | I <sub>DD</sub> 1  | Power saving mode                                                    |                       |      | 5   | μA   |
| Curent drain                | I <sub>DD</sub> 2  | V <sub>DD</sub> = 6.0 V, output open, f <sub>OSC</sub> = 50 kHz      |                       | 1.2  | 2.0 | mA   |

# 1. When CL is stopped at the low level



# 2. When CL is stopped at the high level

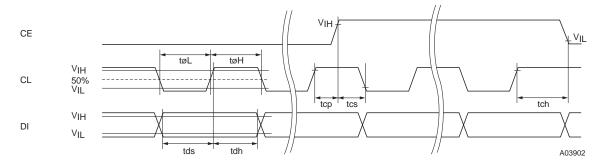
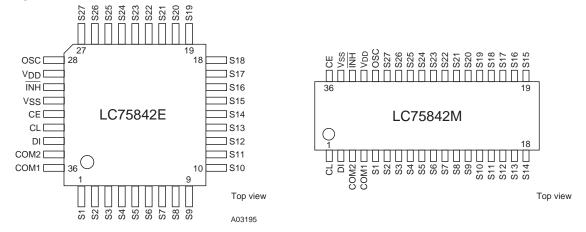
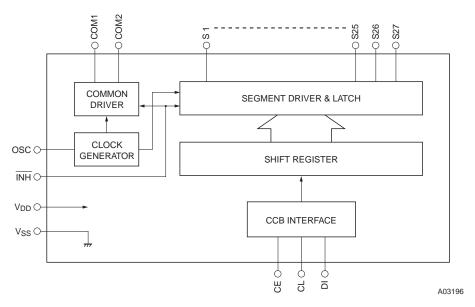
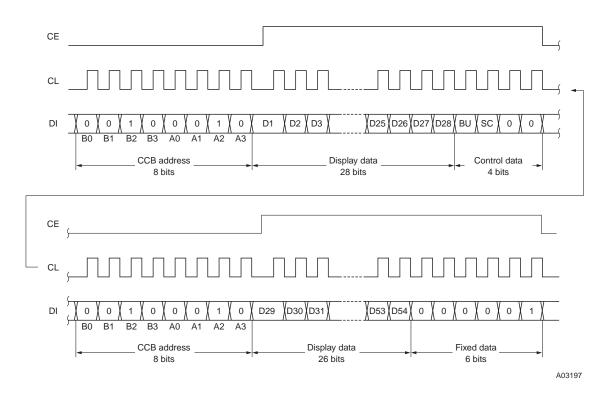





Figure 1

# **Pin Assignments**



# **Block Diagram**




# **Pin Functions**

| Pin No.  LC75842E LC75842M |                |              | Function                                                                                                                                                                                                                                                                                                     | Active | I/O | Handling when unused |
|----------------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|----------------------|
| S1 to S27                  | 1 to 27        | 5 to 31      | Segment outputs for displaying the display data transferred by serial data input.                                                                                                                                                                                                                            | _      | 0   | Open                 |
| COM1<br>COM2               | 36<br>35       | 4 3          | Common driver outputs. The frame frequency f <sub>O</sub> is f <sub>OSC</sub> /512 Hz.                                                                                                                                                                                                                       |        | 0   | Open                 |
| osc                        | 28             | 32           | Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor at this pin.                                                                                                                                                                                         | _      | I/O | V <sub>DD</sub>      |
| CE<br>CL<br>DI             | 32<br>33<br>34 | 36<br>1<br>2 | Serial data transfer inputs. Must be connected to the control microprocessor.  CE: Chip enable  CL: Synchronization clock  DI: Transfer data                                                                                                                                                                 | H<br>  | I   | GND                  |
| ĪNH                        | 30             | 34           | Display off control input $\overline{\text{INH}} = \text{low (V}_{\text{SS}}) \dots \text{Display off (S1 to S27, COM1 and COM2 = low)}$ $\overline{\text{INH}} = \text{high (V}_{\text{DD}}) \dots \text{Display on}$ However, serial data transfer is possible when the display is forced off by this pin. | L      | I   | GND                  |
| V <sub>DD</sub>            | 29             | 33           | Power supply. Provide a power supply voltage of between 4.0 and 6.0 V.                                                                                                                                                                                                                                       | _      | _   | _                    |
| V <sub>SS</sub>            | 31             | 35           | Power supply. Connect this pin to ground.                                                                                                                                                                                                                                                                    | _      | _   | _                    |

# **Serial Data Transfer Format**

1. When CL is stopped at the low level



# 2. When CL is stopped at the high level

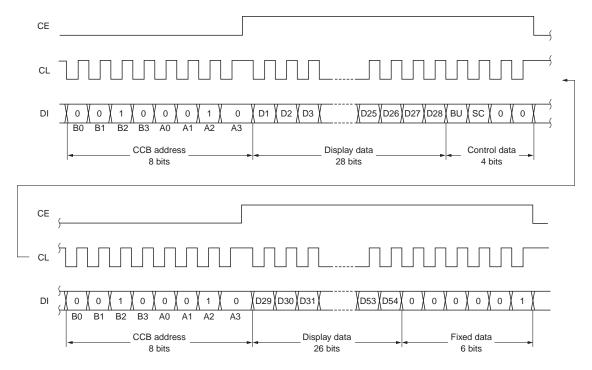
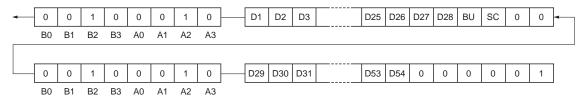



Figure 2

- CCB address.....44<sub>H</sub>
- D1 to D54......Display data


Dn (n = 1 to 54) = 1: Segment on

Dn (n = 1 to 54) = 0: Segment off

- BU ......Control data for specifying normal mode or power saving mode
- SC.....Control data for specifying all segments on or off

# **Serial Data Transfer Example**

When 29 or more segments are used all 80 bits of the serial data must be sent.



When fewer than 29 segments are used only the first 40 bits of the serial data can be sent. However, all 80 bits must be sent after power is first applied.



Note: The following type of transfer cannot be used when fewer than 29 segments are used.



# **Control Data Functions**

1. BU: Control data for specifying normal mode or power saving mode

This control data bit is used to control the normal mode/power saving mode state of the LC75842E and LC75842M.

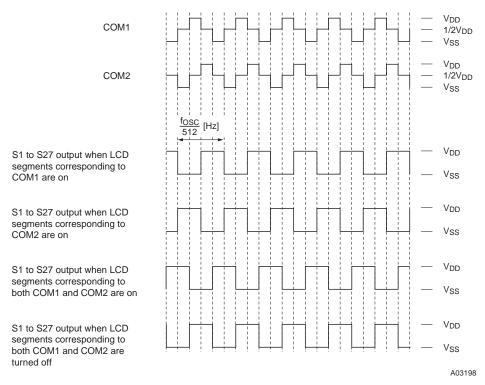
| BU | Mode                                                                                                                          |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0  | Normal mode                                                                                                                   |  |  |  |
| 1  | Power saving mode (The OSC pin oscillator is stopped and the common and segment output pins go to the V <sub>SS</sub> level.) |  |  |  |

2. SC: Control data for specifying all segments on or off This control data bit is used to turn all segments on or off.

| SC |   | Display state |
|----|---|---------------|
|    | 0 | On            |
|    | 1 | Off           |

Note that when SC is 1 the display is turned off by outputting the segment off waveforms from the segment pins.

# Correspondence between Display Data and Segment Output Pins


| Segment output pin | COM1 | COM2 |
|--------------------|------|------|
| S1                 | D1   | D2   |
| S2                 | D3   | D4   |
| S3                 | D5   | D6   |
| S4                 | D7   | D8   |
| S5                 | D9   | D10  |
| S6                 | D11  | D12  |
| S7                 | D13  | D14  |
| S8                 | D15  | D16  |
| S9                 | D17  | D18  |
| S10                | D19  | D20  |
| S11                | D21  | D22  |
| S12                | D23  | D24  |
| S13                | D25  | D26  |
| S14                | D27  | D28  |

| Segment output pin | COM1 | COM2 |
|--------------------|------|------|
| S15                | D29  | D30  |
| S16                | D31  | D32  |
| S17                | D33  | D34  |
| S18                | D35  | D36  |
| S19                | D37  | D38  |
| S20                | D39  | D40  |
| S21                | D41  | D42  |
| S22                | D43  | D44  |
| S23                | D45  | D46  |
| S24                | D47  | D48  |
| S25                | D49  | D50  |
| S26                | D51  | D52  |
| S27                | D53  | D54  |

For example, the table below lists the output states for the S11 segment output pin.

| Display data |     | Segment output pin (S11) state           |  |
|--------------|-----|------------------------------------------|--|
| D21          | D22 | Geginerit Gutput piri (311) state        |  |
| 0            | 0   | Both segments for COM1 and COM2 are off. |  |
| 0            | 1   | Segment for COM2 is on.                  |  |
| 1            | 0   | Segment for COM1 is on.                  |  |
| 1            | 1   | Both segments for COM1 and COM2 are on.  |  |

# Output Waveforms (1/2 duty, 1/2 bias drive)



# INH and Display Control

Since the IC internal data (D1 to D54 and control <u>data</u>) is undefined when power is first applied, the display is turned off (S1 to S27, COM1 and COM2 = low) by setting  $\overline{\text{INH}}$  pin low at the same time as power is applied. Then, meaningless display at the power on can be prevented by transferring all 80 bits of serial data from the controller while the display is turned off and  $\overline{\text{INH}}$  pin high after the transfer completes. (See Figure 3.)

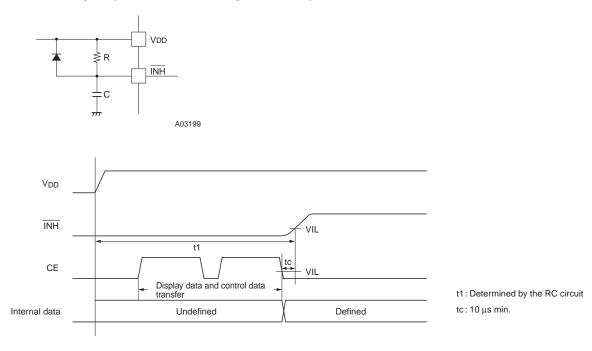


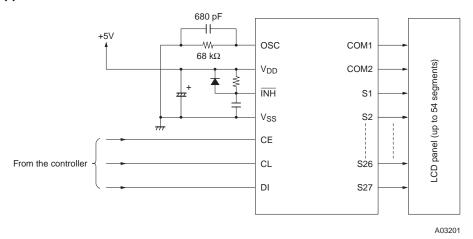

Figure 3

No. 4966-8/10

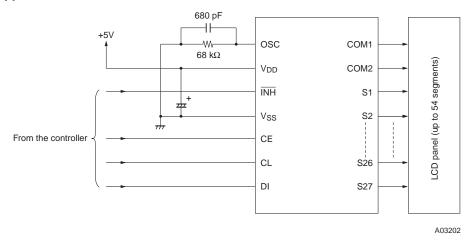
A03200

# Notes on Transferring Display Data from the Controller

Since the LC75842E and LC75842M take the display data (D1 to D54) in two separate transfer operations as shown in Figure 2, we recommend that all the display data be transferred within 30 [ms] to maintain the quality of the displayed image.


# **Sample Display**

Example in which 40 segments are used (up to 54 segments can be used)




Note: The numbers in circles indicate the number of segments.

# **Sample Application Circuit 1**



#### Sample Application Circuit 2



No. 4966-9/10

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 2001. Specifications and information herein are subject to change without notice.