

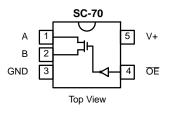
New Product

DG2301 Vishay Siliconix

High-Speed, Low r_{ON}, SPST Analog Switch (1-Bit Bus Switch)

FEATURES

- SC-70 5-Lead Package
- 5- Ω Switch Connection Between Two Ports
- Minimal Propagation Delay Through The Switch
- Low I_{CC}
- Zero Bounce In Flow-Through Mode
- Control Inputs Compatible with TTL Level


DESCRIPTION

The DG2301 is a high-speed, 1-bit, low power, TTL-compatible bus switch. Using sub-micron CMOS technology, DG2301 achieves low on-resistance and negligible propagation delay.

The DG2301 consist of a bi-directional input/output pins A and

B. When the output enable (\overline{OE}) is low, the input/output pins are connected. When the \overline{OE} is high, the switch is open and a high-impedance state exists between input/output pins A and B.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: E4

TRUTH TABLE			
OE	В	Function	
L	A	Connect	
Н	HiZ State	Disconnect	

ORDERING INFORMATION			
Temp Range	Package	Part Number	
-40 to 85°C	SC70-5	DG2301DL	

DG2301

Vishay Siliconix

New Product

ABSOLUTE MAXIMUM RATINGS

Reference to GND

V+	-0.3 to +6 V
OE, A, B ^a 0.3 to	(V+ + 0.3 V)
Continuous Current (Any terminal)	$\pm 50 \text{ mA}$
Peak Current	. $\pm 200 \text{ mA}$
(Pulsed at 1 ms, 10% duty cycle)	
Storage Temperature (D Suffix)	65 to 150°C

Power Dissipation (Packages)^b

Notes:

- Signals on A, or B or OE exceeding V+ will be clamped by internal a.
- diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC Board.
- Derate 3.1 mW/°C above 70°C

SPECIFICATIONS (V+ = 5.0 V) **Test Conditions** Limits **Otherwise Unless Specified** -40 to 85°C V+ = 4.0 V to 5.5 V, V_{OE} = 0.8 or 2.0 V^e Min^b Typc Max^b Unit Parameter Symbol Tempa **DC** Characteristics V+ = 4.5 V, V_A = 0 V, I_B = 64 mA Full 7 V+ = 4.5 V, V_A = 0 V, I_B = 30 mA Full 7 Ω On-Resistance **I**ON V+ = 4.5 V, V_A = 2.4 V, I_B = 15 mA Full 15 V+ = 4.0 V, V_A = 2.4 V, I_B = 15 mA Full 20 V+ = 5.5 V, V_A = 1 V/4.5 V, V_B = 4.5 V/1 V Switch Off Leakage Current Full -10 10 I_(off) μA 10 V+ = 5.5 V, $V_A = V_B = 1 V/4.5 V$ -10 Switchl-On Leakage Current I_(on) Full 2.0 Full Input High Voltage VIH v Input Low Voltage VIL Full 0.8 Input Current IIL or IIH $V_{OE} = 0 \text{ or } V+$ Full -1 1 μΑ **Dynamic Characteristics** Full 1 t_{PHL} Prop Delay Bus-to-Bus^f V_{LD} = Open (Figure 1 and 2) Full 1 t_{PLH} V_{LD} = 7 V, V+ = 4.5 V to 5.5 V (Figure 1 and 2) Full 3.9 t_{PZL} $V_{LD} = 7 V, V_{+} = 4.0 V$ (Figure 1 and 2) Full 4.5 Output Enable Timed V_{LD} = Open, V+ = 4.5 V to 5.5 V (Figure 1 and 2) 3.7 Full t_{PZH} ns V_{LD} = Open, V+ = 4.0 V (Figure 1 and 2) Full 4.5 V_{LD} = 7 V, V+ = 4.5 V to 5.5 V (Figure 1 and 2) Full 40 t_{PLZ} $V_{LD} = 7 V, V_{+} = 4.0 V$ (Figure 1 and 2) 4.2 Full Output Disable Timed V_{ID} = Open, V+ = 4.5 V to 5.5 V (Figure 1 and 2) Full 1.0 t_{PHZ} V_{LD} = Open, V+ = 4.0 V (Figure 1 and 2) Full 1.0 Cin 3.5 Input Capacitance Room C_(off) Channel-Off Capacitanced Room 5 pF $V_{OE} = 0$ or V+, f = 1 MHz Channel-On Capacitanced Room 11 CON **Power Supply** Power Supply Range V+ 4.0 5.5 V Power Supply Current $V_{OE} = 0 \text{ or } V+$ 0.01 1+ 1.0 μΑ

Notes:

Room = 25°C, Full = as determined by the operating suffix. a.

The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

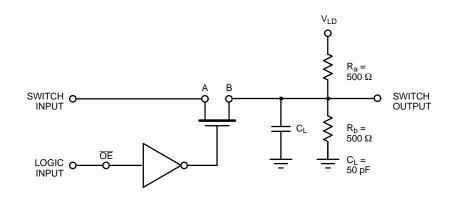
Typical values are for design aid only, not guaranteed nor subject to production testing.

d. Guarantee by design, nor subjected to production test.

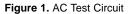
 V_{IN} = input voltage to perform proper function.

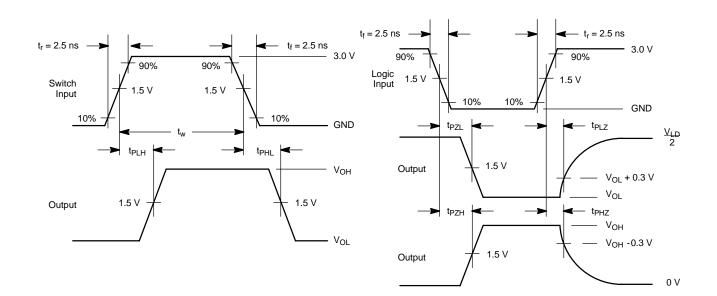
Guaranteed by design and not production tested. The bus switch propagation delay is a function of the RC time constant contributed by the on-resistance and f. the specified load capacitance with an ideal voltage source (zero output impedance) driving the switch.

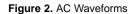
www.vishay.com 2



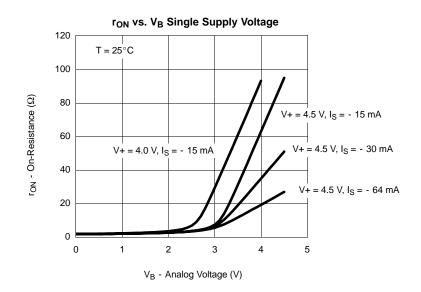
New Product


DG2301


Vishay Siliconix


AC LOADING AND WAVEFORMS

Input driven by 50- Ω source terminated in 50 Ω C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_W = 50 ns


DG2301

Vishay Siliconix

New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.