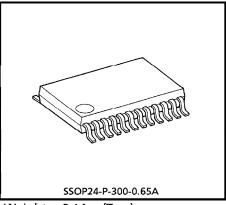
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

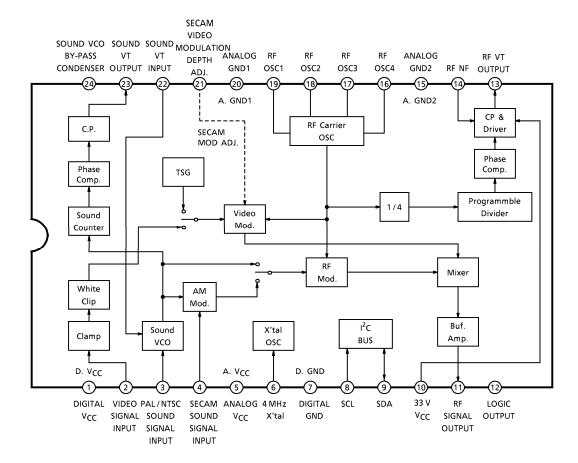

TA1297AFN

RF MODULATOR FOR VCR

The TA1297AFN is a PLL RF modulator for the UHF frequency range. The multi system can easily make the lineup development.

FEATURES

- Phase locked loop frequency synthesizer for RF carrier and sound subcarrier
- Programmable of no adjustment sound subcarriers (4.5 MHz, 5.5 MHz, 6.0 MHz, 6.5 MHz)
- Possible to use for L-SECAM
- Programmable picture to sound ratio
- Bus controlled Test pattern Signal Generator
- Bus controlled one logic output port
- Bus controlled power save mode
- Controlled by I²C bus (Conforms to a fast-mode)
- The sound S/N ratio is improved from TA1243CFN


Weight: 0.14 g (Typ.)

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

BLOCK DIAGRAM

TERMINAL CHARACTERISTICS ($V_{CC1} = 5.0 \text{ V}, V_{CC2} = 33 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$)

PIN No.	FUNCTION	TYP. DC VOLTAGE	TYP. AC VOLTAGE	INTERFACE	NOTE
1	Digital VCC	(5.0 V)		_	_
2	Video Signal Input	2.4 V (Sync TIP)	0.5 V _{р-р}	A. VCC	Sync TIP clamp input
3	PAL / NTSC Sound Signal Input	0 V	200 mV _{p-p}	A. VCC	Switch terminal of normal mode and test mode. L : Normal mode (The voltage is under 2 V.) H : Test mode
4	SECAM Sound Signal Input	0 V	200 mV _{p-p}	A. VCC	
5	Analog V _{CC}	(5.0 V)		_	Analog power supply
6	4 MHz X'tal	2.7 V		D. V _{CC} 3.6 V 2 kΩ 2 kΩ 0.1 mA	Switch terminal of internal oscillation and external input mode. (Refer to page 9)
7	Digital GND	(0 V)		_	Digital ground
8	SCL	OPEN BASE	5 V _{p-p}	D. V _{CC}	I ² C BUS serial clock
9	SDA	OPEN BASE	5 V _{p-p}	D. V _{CC}	I ² C BUS serial data
10	VCC33	(33 V)	_	_	Tuning voltage power supply

2001-02-22 3/19

PIN No.	FUNCTION	TYP. DC VOLTAGE	TYP. AC VOLTAGE	INTERFACE	NOTE
11	RF Signal Output	3.8 V	80 dBμV (Picture)	A. V _{CC}	
12	Logic Output	H : 4.3 V L : 0 V	l	A. VCC	BUS control I max = 10 mA
13	RF V _T Output	_	I	VCC33	Tuning voltage output
14	RF NF	_		D. V _{CC}	
15	Analog GND2	(0 V)		_	Analog ground
16	RF OSC4	3.4 V		A. V _{CC}	
17	RF OSC3	3.4 V			
18	RF OSC2	3.4 V	_		
19	RF OSC1	3.4 V		A. GND	
20	Analog GND1	(0 V)			Analog ground

PIN No.	FUNCTION	TYP. DC VOLTAGE	TYP. AC VOLTAGE	INTERFACE	NOTE
21	SECAM Video Modulation depth Adj.	3.1 V	_	A. Vcc 30 kΩ A. GND	Possible to adjustment by the outside resistance. Resistance is inserted between VCC and 21 pin: Modulation depth decreases Resistance is inserted between GND and 21 pin: Modulation depth increases
22	Sound VT Input	I	_	A. V _{CC} 2 kΩ A. GND	
23	Sound VT Output	I	l	D. VCC GY GY D. GND	
24	Sound VCO by-pass condenser	I		VCC (3) 4/2 8/8 6 kΩ (4) 4/4 8/4 A. GND	

I²C-BUS DATA FORMAT

		MSB							LSB	ACK
Address Byte	ADR	1	1	0	0	1	0	1	0	ACK
Control Byte1	C1	1	(*)	(*)	(*)	PS2	PS1	PS0	LE	ACK
Control Byte2	C2	wo	PSA	LO	FA1	FA0	(*)	(*)	(*)	ACK
Prog. Data Byte1	PD1	0	TSG	N10	N9	N8	N7	N6	N5	ACK
Prog. Data Byte2	PD2	N4	N3	N2	N1	0	1	0	0	ACK

(*) : Don't care

Bus data transmission: ADR + C1 + C2 + PD1 + PD2 or

 $\mathsf{ADR} + \mathsf{PD1} + \mathsf{PD2} + \mathsf{C1} + \mathsf{C2} \quad \mathsf{or} \quad$

ADR + C1 + C2 ADR + PD1 + PD2

1. PS2~PS0: Picture to sound ratio setting (Video signal input: Stair case (B/W) 0.5 V_{p-p} Sound signal input: 1 kHz sin wave 0.2 V_{p-p})

			_	
PS RATIO (SYSTEM L)	PS RATIO (OTHER THAN SYSTEM L)	PS2	PS1	PS0
– 6 dB	– 10 dB	0	0	0
– 7 dB	– 11 dB	0	0	1
– 8 dB	– 12 dB	0	1	0
– 9 dB	– 13 dB	0	1	1
– 10 dB	– 14 dB	1	0	0
– 11 dB	– 15 dB	1	0	1
– 12 dB	– 16 dB	1	1	0
– 13 dB	– 17 dB	1	1	1

2. LE: System L enable

1 ... This mode is SYSTEM L. Positive modulation for video and AM modulation for sound inter carrier at 6.5 MHz.

In this case, FA1 and FA2 don't care.

0 ... Modes other than SYSTEM L. Negative modulation for video and FM modulation for sound inter carrier at 4.5 MHz, 5.5 MHz, 6.0 MHz, 6.5 MHz.

The system is selected by FA1 and FA2.

- 3. WO: Control of white clip
 - 1 ... White clip off. The system L is used, and the characteristic of 100% modulations can be evaluated.
 - 0 ... White clip on.

- 4. PSA: Control of power save
 - 1 ... Power save off. (normal operation)
 - Power save on. Becomes waiting for the bus data.
 And power supplies other than the bus decoder are turned off.

The data of the decoder is maintained while $V_{\mbox{CC}}$ is added.

When V_{CC} is turned off, power on reset changes the data of the decoder by turning on V_{CC} again.

- 5. LO: Control of logic out
 - 1 ... 12 pin become high voltage.
 - 0 ... 12 pin become low voltage.
- 6. FA1~FA0 : Sound Inter Carrier Frequencies setting

FA1	FA0	SOUND INTER CARRIER FREQUENCY	FREQUENCY DEVIATION
0	0	4.5 MHz	± 25 kHz
0	1	5.5 MHz	± 50 kHz
1	0	6.0 MHz	± 50 kHz
1	1	6.5 MHz	± 50 kHz

- 7. TPSG: Control of test pattern signal generator
 - 1 ... ON
 - 0 ... OFF (normal operation)
- 8. N10~N1: Programmable Divider Data setting

The frequency of VCO is calculated by the next expression.

$$f_{VCO} = 31.25 \text{ kHz} \times 32 \times \text{N} + 250 \text{ kHz}$$

$$N = 512 \times \text{N}10 + 256 \times \text{N}9 + 128 \times \text{N}8 + 64 \times \text{N}7 + 32 \times \text{N}6 + 16 \times \text{N}5 + 8 \times \text{N}4 + 4 \times \text{N}3 + 2 \times \text{N}2 + \text{N}1$$

The frequency step is 1 MHz, and 250 kHz is given in the IC.

The divider data N is made frequency -250 kHz of the set channel.

POWER ON RESET MODE

Power on reset functions when the power supply is turned on.

The decoder data is the data of power on reset until the bus data is received.

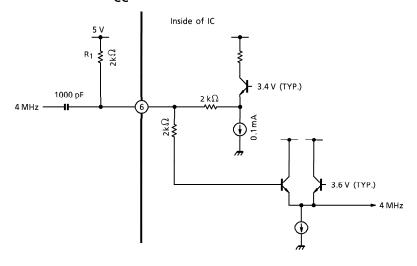
In this mode, because the power saving is turned on, the RF signal is not output.

• VCO Frequency Setting: 591.25 MHz (CCIR 36 ch)

• Television System : System G (Sound carrier frequency : 5.5 MHz,

FM deviation: ±50 kHz,

Video modulation polarity: negative modulation)


P/S Ratio Set Up : -13 dB
White Clip : ON
Power Save : ON
Logic Output : LOW
TPSG : OFF

		MSB							LSB	ACK
Address Byte	ADR	1	1	0	0	1	0	1	0	ACK
Control Byte1	C1	1	(*)	(*)	(*)	0	1	1	0	ACK
Control Byte2	C2	0	0	0	0	1	(*)	(*)	(*)	ACK
Prog. Data Byte1	PD1	0	0	1	0	0	1	0	0	ACK
Prog. Data Byte2	PD2	1	1	1	1	0	1	0	0	ACK

(*) : Don't care

EXTERNAL 4 MHz INPUT MODE

It is possible to change to external 4 MHz input mode by connecting resistance (R_1) between terminal 6 and 5 V V_{CC} .

Condition of external 4 MHz input mode: In terminal 6, the voltage is above 3.8 V, the amplitude of 4 MHz signal is above 100 mV_{p-p} (sine wave).

Please design R₁, and an external circuit to suit the condition.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage 5 V System	V _{CC1}	8	V
Supply Voltage 33 V System	V _{CC2}	35	V
Power Dissipation (Note)	PD	850	mW
Input Terminal Voltage	VIN	GND - 0.3~V _{CC} + 0.3	V
Operating Temperature	T _{opr}	- 20∼75	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note) : Derated linearly above $Ta = 25^{\circ}C$ in the proportion of $6.8 \, \text{mW} \, / \, ^{\circ}C$.

Please note the product design of the board because the calorific value is large.

- The copper area is widened.
- Hole for heat radiation of shield case.
- Other enough consideration.

RECOMMENDED OPERATING CONDITION

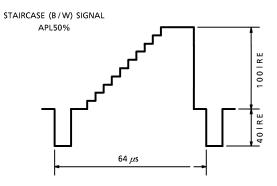
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage 5 V System	V _{CC1}	4.5	5	5.5	V
Supply Voltage 33 V System	V _{CC2}	27	33	35	V

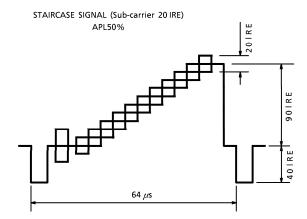
2001-02-22 9/19

ELECTRICAL CHARACTERISTICS ($V_{CC1} = 5.0 \text{ V}$, $V_{CC2} = 33 \text{ V}$, Ta = 25°C, fp = 591.25 MHz)

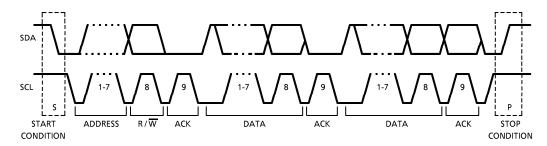
	No.	CHARAC	CTERISTIC	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	NOTE
	1-1	Supply Curro (A.V _{CC} + D.		I _{CC1}	_	41	58	66	mA	Power supply of 5 V part
Whole	1-2	Supply Current 2 (A.V _{CC} + D.V _{CC})		I _{CC2}	_	4	6	8	mA	5 V power supply of power save
Ž	1-3	Supply Current 3 (V _{CC} 33 V)		I _{CC3}	_	1.4	2.2	3.0	mA	Power supply of 33 V part
	1-4	Operating F Range	requency	fop	_	471.25	_	855.25	MHz	fp frequency
	2-1-1	Video RF Output Level	(Negative Modulation)	V _{on (fp)}		77	80	83	dΒμV	50 Ω Termination STAIR CASE (B/W)
	2-1-2	Video RF Output Level	(Positive Modulation)	V _{op (fp)}	_	,,	00	03	ubμv	signal : 0.5 V _{p-p} input
	2-2-1	Video modulation Depth	(Negative Modulation)	mpn	1	75	79	83	%	WHITE signal
	2-2-2	Video modulation Depth	(Positive Modulation)	трр	_	85	89	93	70	: 0.5 V _{p-p} input
Video Part	2-3-1	White Clipping Level	(Negative Modulation)	mpn (MAX)		90	94	98	%	WHITE signal : 1.0 V _{p-p} input
Vic	2-3-2	White Clipping Level	(Positive Modulation)	mpp (MAX)	_	210	230	_	70	DG/DP: 5%/5°, WHITE CLIP: OFF
	2-4-1	Differential Gain	(Negative Modulation)	DGn			±3	±5	%	STAIR CASE : 0.5 V _{p-p}
	2-4-2	Differential Gain	(Positive Modulation)	DGp	_	_	±3	1 15	7 0	(chrominance signal 20 IRE)

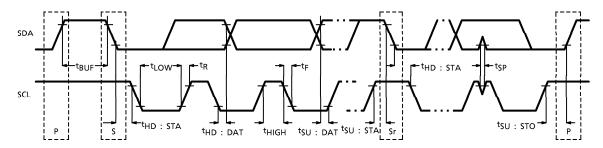

	No.	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	NOTE	
	2-5-1	Differential (Negative Phase Modulation)	DPn			±3	±5	0	STAIR CASE : 0.5 V _{p-p}	
	2-5-2	Differential (Positive Phase Modulation)	DPp		_	_ <u>+</u> 5	<u> </u>		(Chrominance signal 20 IRE)	
	2-6-1	Video S/N (Negative Ratio Modulation)	mpn (S/N)		51	53		dB	0.1~5 MHz, Unweighting,	
	2-6-2	Video S/N (Positive Ratio Modulation)	mpp (S / N)		51	33	_	αв	WHITE 50% signal input	
	2-7-1	Video Frequency Response (Negative Modulation)	fpn			± 1	± 2	dB	0.1~5 MHz 1 MHz	
	2-7-2	Video Frequency Response (Positive Modulation)	fpp			<u>-</u> 1	∸ 2	uв	Reference	
	2-8	Average Picture Level Drift	mp (APL)	_		± 0.5	± 3.0	%	APL 10-90%, 50% Reference	
Part	2-9	Sync Crush Level	∆sync	_	_	1	3	%	{1 - (Vsync/Vwhite) × (100/40)}	
Video F	2-10-1	Chroma (Negative Beat Modulation)	V _{cn}	_	_	– 75	- 70	: 0.5 V _{p-p} input,	4.43 MHz sin wave : 0.5 V _{p-p} input, Video carrier level	
	2-10-2	Chroma (Positive Beat Modulation)	V _{cp}	_		- 65	- 60	ав	reference, P/S = -13 dB	
	2-11-1	RF Carrier 2'nd Harmonic Level	V _{2fp}	_	_	- 26	- 20	dB	Reference =	
	2-11-2	RF Carrier 3'rd Harmonic Level	V _{3fp}	_	_	- 20	- 12	d b	Video carrier level	
	2-12	Video Signal 2nd Harmonic Level	V _{pH}	_	_	- 55	- 50	dB	1 MHz sin wave : 0.5 V _{p-p} input, fp + 1 MHz Reference, fp + 2 MHz measurement	
	2-13-1	Prescaller Spurious (fp×1/2)	V _{PR1/2}	_	_	0	10	4B . M		
	2-13-2	Prescaller (fp × 3 / 2) Spurious	V _{PR3 / 2}	_	_	10	20	$dB\muV$	_	
	2-14-1	Video Carrier Frequency Accuracy	∆fp	_			± 100	kHz	X'tal series capacitor : 6 pF	

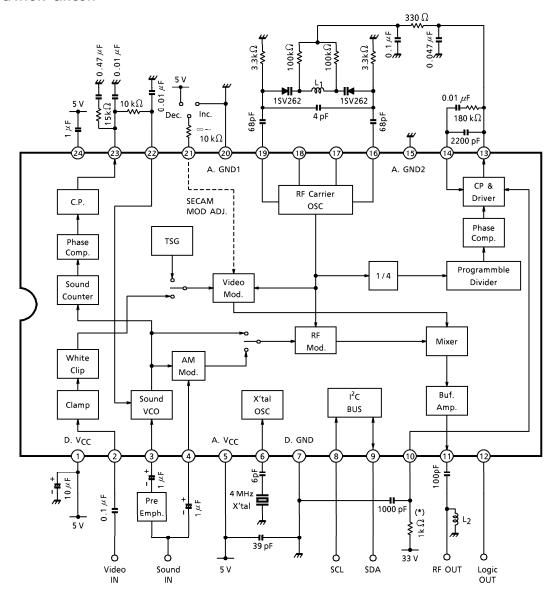

	No.	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	NOTE
	3-1-1	TPSG (Negative Modulation Modulation)	mpn (TPSG)		64	74	84	%	
_	3-1-2	TPSG (Positive Modulation)	mpp (TPSG)		82	92	97	70	
Part	3-2	TPSG V/S Ratio	V/S		2.0	2.4	2.8	_	
TPSG F	3-3-1	TPSG Horizontal Sync Signal Cycle	Tsync	_	62	64	66		TPSG mode
	3-3-2	TPSG Horizontal Sync Signal Width	Wsync		3.6	4.0	4.4	4,6	
	3-4-1	TPSG SYNC-1'st Signal Time	W1		22	24	26	μ S	
	3-4-2	TPSG SYNC-2'nd Signal Time	W2		38	40	42		
	4-1-1	P/S Ratio FM	R _{P/S} FM	_	- 15	– 13	- 11	dB	Set in - 13 dB by bus, STAIR CASE (B/W) signal
	4-1-2	P/S Ratio AM	R _{P/S} AM	_	- 11	- 9	-7	uВ	: 0.5 V _{p-p} input, 1 kHz sin wave input : 0.2 V _{p-p} (AM)
	4-2-1	Range of P/S Ratio	△R _{P / SFM}	1	- 17	ı	- 10	dB	P/S ratio can be adjusted by 1 dB.
Sound Part	4-2-2	Range of P/S Ratio	△R _P /SAM	_	- 13	_	- 6	ub	1 kHz sin wave input : 0.2 V _{p-p} (AM)
Sound	4-3-1	Sound FM1 Modulation Sensitivity 6.5 MHz/ 6.5 MHz/ 6.5 MHz)	etaFM1	l	0.558	0.62	0.682	kHz/ mV	1 kHz sin wave : 0.2 V _{p-p} input,
	4-3-2	Sound FM2 Modulation (4.5 MHz)	etaFM2	_	0.279	0.31	0.341	kHz/ mV	β FM = Δ f (kHz)/200 (mV)
	4-3-3	Sound Modulation AM Sensitivity	etaAM	_	63.9	71.0	78.1	%	1 kHz sin wave : 0.2 V _{p-p} input


	No.	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	NOTE
Sound Part	4-4-1	FM1 (5.5 MH Sound S/N 6.0 MHz Ratio 6.5 MH	z / S / N (FM1)		54	59	_	дв	1kHz sin wave input : ±50 kHz dev. = 0 dB Inter Carrier demod., de-emph = IN, Colorbar signal : 0.5 V _{p-p} input
	4-4-2	Sound S/N FM2 Ratio (4.5 MH	S / N (FM2)	_	50	55	_		1 kHz sin wave input : ±25 kHz dev. = 0 dB Inter Carrier demod., de-emph = IN, Colorbar signal : 0.5 V _{p-p} input
	4-4-3	Sound S/N Ratio AM	S / N (AM)	_	50	55	_		1 kHz sin wave input : 60% mod. = 0 dB de-emph = IN, Colorbar signal : 0.5 V _{p-p} input
	4-5-1	Sound FM Distortion	THD (FM)	_		0.25	0.5	%	1 kHz sin wave : ±50 (25) kHz dev.
	4-5-2	Sound Distortion AM	THD (AM)	_		0.23	0.5		1 kHz sin wave : 60% MOD.
	4-6-1	Sound Frequency FM Response	fs (FM)		_	± 1	±2	dB	100 Hz~20 kHz, 1 kHz reference
	4-6-2	Response	fs (AM)	_	_	± 0.5	± 1		
	4-7-1	Sound 2'nd Harmonic Level	VSH1	_	_	- 65	- 60	dB	P/S ratio = -13 dB, Video carrier level reference
	4-7-2	Sound 3'rd Harmonic Level	V _{SH2}	_		- 70	- 65		
	4-8	Sound Inter-Carrier Frequency Accuracy	Δfs			_	± 750	Hz	X'tal series capacitor : 6 pF

	No.	CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	NOTE
	5-1	Input LOW Voltage of both SDA and SCL Lines	VL	_	0	_	1.8	V	
	5-2	Input HIGH Voltage of both SDA and SCL Lines	VH	-	2.8	_	Vcc	V	
	5-3	Maximum Output LOW Voltage of SDA Line	VACK	_	_	ı	0.4	V	lsync = 3 mA, During the acknowledge clock pulse
part	5-4	Threshold Voltage of Power on Reset	V _{RESET}		2.0	2.8	3.6	V	
Logic p	5-5	Threshold Voltage of External Reference Signal Input Mode	V _{EXT}	_	3.4	3.6	3.8	V	Voltage of terminal 6 L: Internal oscillation H: External input
	5-6	Threshold Voltage of Test mode	V _{TEST}		2.0	3.5	4.5	V	Voltage of terminal 3 L : Normal mode H: Test mode
	5-7	Logic Out Current	lLOGIC	_	_	_	10	mA	Mounts on the board of power dissipation 830 mW. Ta (MAX) = 75°C
_	6-1	Negative Resistance of X'tal Oscillator	RXO	_	- 1	_	_	kΩ	_
	6-2	Input Signal Level of External Reference Signal	V _{EXREF}	_	100	_	_	mV _{P-P}	External 4 MHz input mode, sine wave


INPUT WAVE FORM



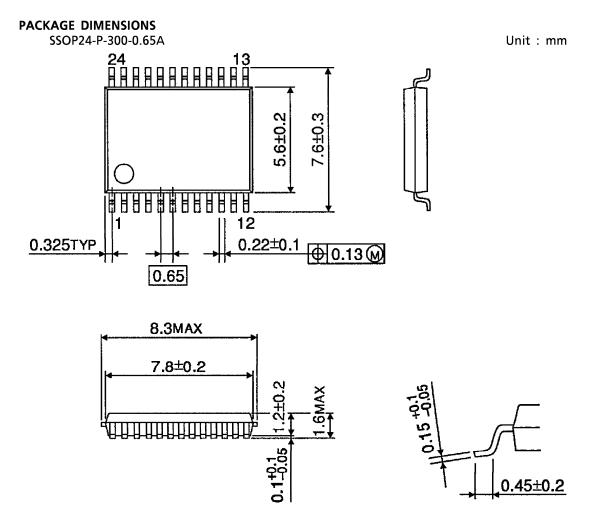

DATA TRANSFER ON THE I²C-BUS

TIMING REQUIREMENTS FOR THE I²C-BUS

APPLICATION CIRCUIT

L₁: Coil Diameter 3.2 mm, Wire Diameter 0.4 mm, 2.5 turns, Air coil.

L₂: For frequency response correction.


(*) : Protection resistance for prevention of overshoot.

HANDLING PRECAUTIONS

- 1. The device should not be inserted into or removed from the test jig while the voltage is being applied: otherwise the device may be degraded or break down.
 - Do not abruptly increase or decrease the power supply to the device either.
 - Overshoot or chattering of the power supply may cause the IC to be degraded.
 - To avoid this filters should be incorporated on the power supply line.
- 2. The application circuits described in this datasheet are given only as system examples for evaluating the device's performance. Toshiba Intend neither to recommend the configuration or related values of the peripheral circuits nor to manufacture such application system in large quantities.
 - Please note that high-frequency characteristics of the device may vary depending on the external components, mounting method and other factors relating to the application design.
 - Therefore, the characteristics of application circuits must be evaluated at the responsibility of the users incorporating the device into their design.
 - Toshiba only guarantee the quality and characteristics of the device as described in this detasheet and do not assume any responsibility for the customers application design.
- In order to better understand the quality and reliability of Toshiba semiconductor products and to incorporate them into design in an appropriate manner, please refer to the latest Semiconductor Reliability Handbook (Integrated Circuit) published by Toshiba Semiconductor Company.

The handbook can also be viewed online at

http://www.semicon.toshiba.co.jp/noseek/us/sinrai/sinraifm.htm

Weight: 0.14 g (Typ.)