HA13561F

Combo (Spindle \& VCM) Driver HITACHI

ADE-207-182 (Z)
1st Edition
July 1996

Description

This COMBO Driver for HDD application consists of Sensorless Spindle Driver and BTL type VCM Driver.
Bipolar Process is applied and a "Soft Switching Circuit" for less commutation noise and a "Booster Circuit' for smaller Saturation Voltage of Output Transistor are also implemented.

Features

- Soft Switching Driver

Small Surface Mount Package: FP-80E (QFP80 Pin)
Low thermal resistance: $35^{\circ} \mathrm{C} / \mathrm{W}$ with 6 layer multi glass-epoxy board

- Low output saturation voltage
— Spindle 0.8 V Typ (@1.0 A)
— VCM 0.8 V Typ (@0.8 A)

Functions

- 1.8 A Max/3-phase motor driver
- 1.2 A Max BTL VCM Driver
- Auto retract
- Soft Switching Matrix
- Start up circuit
- Booster
- Speed Discriminator
- Internal Protector (OTSD, LVI)
- POR
- Power monitor

HA13561F

Pin Arrangement

HITACHI

Pin Description

Pin Number	Pin Name	Function
1	VBST	Boosted voltage output to realize the low output saturation voltage
2	VCMP	Output terminal on VCM driver
3	VCMN	Output terminal on VCM driver
4	BC2	To be attached the external capacitor for booster circuitry
5	BC1	ditto
6 to 15	GND	Ground pins
16	W	W phase output terminal on spindle motor driver
17	RNF	Sensing input for output current on spindle motor driver
18	PCOMP	To be attached the external capacitor for phase compensation of spindle
19	motor driver	
20	CT	To be attached the center tap of the spindle motor for B-EMF sensing
21	G-PUMP	V phase output terminal on spindle motor driver
22	CLREF	To be attached the external integral constants for speed control of spindle
23	R1	Retor

HITACHI

HA13561F

Pin Description (cont)

Pin Number	Pin Name	Function
58	NC	No function
59	NC	ditto
60	COMPOUT	Comparator output to detect the direction of output current on VCM driver
61	VREF1	Regulated voltage output to be used as reference of peripheral ICs
62	RESINH	Used for inhibiting the restart function of the spindle motor driver after power down
63	OPIN (+)	Non inverted input of OP.Amp. to be used for filtering the signal on PWMOUT
64	VCTL	OP. Amp. output, this signal is used as control signal for VCM driver output
65	OPIN (-)	Inverted input of OP.Amp. to be used for filtering the signal on PWMOUT
66 to 75	GND	Ground pins
76	LVI2	Sensing input for power monitor circuitry
77	Vpsv	Power supply for VCM driver
78	RETPOW	Power supply for retract circuitry
79	$\overline{R E T O N}$	To be attached the base terminal of external transistor for retracting
80	RS	Sensing input for output current on VCM driver

HITACHI

Block Diagram

HITACHI

HA13561F

Truth Table

Table 1 Truth Table (1)

SPNENAB	Spindle Driver
H	ON
Open	Cut off
L	Braking

Table 2 Truth Table (2)

VCMENAB	VCM Driver
H	ON
L	Cut off

Table 3 Truth Table (3)

OTSD	Spindle Driver	VCM Driver	Retract Driver
not Active	See table 1	See table 2	Cut off
Active	Cut off	Cut off	ON

Table 4 Truth Table (4)

POLSEL	(D1)	Comment
H	-	Test Mode
Open	$1 / 12$	for 8 poles motor
L	$1 / 18$	for 12 poles motor

Table 5 Truth Table (5)

CNTSEL	CNT	Rotation Speed (at CLOCK $=\mathbf{5 M H z})$
H	2605	$3,600 \mathrm{rpm}$
Open	2084	$4,500 \mathrm{rpm}$
L	1736	$5,400 \mathrm{rpm}$

HITACHI

Table 6 Truth Table (6)

RESINH	Spindle Driver
H	Inhibiting the restart after power down
L	Not inhibiting the restart after power down

Table $7 \quad$ Truth Table (7)

GAIN	VCM Driver
H	High Gain Mode
L	Low Gain Mode

HITACHI

HA13561F

Timing Chart

1. Power on reset (1)

Note: 1. How to determine the threshold Voltage Vsd and the delay time $\mathrm{t}_{\mathrm{DLY}}$ both are shown in the external components table.

2. Power on reset (2)

HITACHI

3. Motor start-up seaquence

(a) Timing chart of start-up seaquence

$$
\begin{aligned}
\Delta \mathrm{No} & =1.2 \% \text { when CNTSEL }=\mathrm{H} \\
& =1.5 \% \text { when CNTSEL=Open } \\
& =1.8 \% \text { when CNTSEL}=\mathrm{L}
\end{aligned}
$$

*2. READY output goes to High, if the rotation speed error keeps to be less than Δ No longer time than tdelay.
tdelay $=\frac{500 \cdot 10^{7}}{\text { fclk }[\mathrm{Hz}]}[\mathrm{ms}]$
*3. The turning point of driving mode from switching synchronize to the turning point of READY output from Low to High.
(b) Retry circuitry for misstart-up

The HA13561F has the motor stop detector as shown hatching block. This function is monitoring the situation of the motor while the motor is running by B-EMF sensing. If the motor will be caused a misstarting up, the motor will be automatically restarted within 200 ms after the motor stopped. This function increase the reliability for the motor starting up.

HITACHI

HA13561F

4. Braking \& Shut down the Spindle Driver

Note: The SPNENAB should be selected the open state after braking to reduce the supply current from Vps and V_{ss}.

5. Start-up of the Spindle motor

HITACHI

6. Acceleration and Running the spindle motor

HITACHI

HA13561F

Application

HITACHI

External Components

Parts No.	Recommended Value	Purpose	Note
R1a	$(\mathrm{R} 1 \mathrm{a}+\mathrm{R} 1 \mathrm{~b}) \geq 10 \mathrm{k} \Omega$	V/I converter	1,4,6
R1b	$(\mathrm{R} 1 \mathrm{a}+\mathrm{R} 1 \mathrm{~b}) \geq 10 \mathrm{k} \Omega$		
R2	-	Integral constant	3
R3 to R8	-	PWM filter	9
R101, R102	-	Setting of LVI1 voltage	7
R103, R104	-	Setting of LVI2 voltage	7
R105	$5.6 \mathrm{k} \Omega$	Pull up	
R108	-	Limitation for Retract current	12
RS	1.0Ω	Current sensing for VCM Driver	10
Rnf	-	Current sensing for Spindle Driver	1
R_{x}	-	Reduction for gain peaking	11
C1, C2	-	Integral constant	3
C3 to C6	-	PWM filter	9
C_{x}	-	Reduction for gain peaking	11
C101	$\geq 0.1 \mu \mathrm{~F}$	Power supply by passing	
C102	$\geq 0.1 \mu \mathrm{~F}$	Power supply by passing	
C103	-	Oscillation for start-up	6
C104	$0.22 \mu \mathrm{~F}$	for booster	
C105	$2.2 \mu \mathrm{~F}$	for booster	
C106	-	Delay for POR	8
C109	$\geq 0.1 \mu \mathrm{~F}$	Power supply by passing	
C110, C111	$0.33 \mu \mathrm{~F}$	Phase compensation	
Qret	-	Retract Driver	12
D1	-	Protection for Qret	12
D2	TBD	Protection for parasitic phenomena	

Notes: 1. Output maximum current on spindle motor driver Ispnmax is determined by following equation.
Ispnmax $=\frac{R 1 b}{R 1 a+R 1 b} \cdot \frac{V_{R 1}}{R_{N F}} \quad[A]$
where, $\mathrm{V}_{\mathrm{R} 1}$: Reference Voltage on Pin 24 [V] (= 1.3)
2. Input clock frequency fclk on pin 42 is determined by following equation.

$$
\begin{equation*}
\mathrm{fclk}=\frac{4}{5} \cdot \mathrm{~N}_{\mathrm{O}} \cdot \mathrm{P} \cdot \mathrm{D} 1 \cdot(\mathrm{CNT}-0.5) \quad[\mathrm{Hz}] \tag{2}
\end{equation*}
$$

where, N_{o} : Standard rotation speed [rpm]
P: Number of pole
D1: Dividing ratio on divider 1

HITACHI

HA13561F

$$
\begin{aligned}
\text { D1 } & =1 / 12(\text { when } \operatorname{Pin} 40=\text { Open) for } 8 \text { pole motor } \\
& =1 / 18(\text { when } \operatorname{Pin} 40=\text { Low }) \text { for } 12 \text { pole motor }
\end{aligned}
$$

CNT:Count number on speed discriminator

$$
\begin{aligned}
\text { CNT } & =2605(\text { when Pin } 41=\text { High }) \\
& =2084(\text { when Pin } 41=\text { Open }) \\
& =1736(\text { when Pin } 41=\text { Low })
\end{aligned}
$$

3. Integral constants R2, C1 and C2 can be designed as follows.

$$
\begin{align*}
\omega_{\mathrm{O}} & =\frac{1}{10} \cdot 2 \cdot \pi \cdot \frac{\mathrm{~N}_{\mathrm{O}}}{60} \quad[\mathrm{rad} / \mathrm{s}] \tag{3}\\
\mathrm{R} 2 & =\frac{1}{9.55} \cdot \frac{\mathrm{Rnf} \cdot \mathrm{~J} \cdot \omega_{\mathrm{O}} \cdot \mathrm{~N}_{\mathrm{O}} \cdot(\mathrm{R} 1 \mathrm{a}+\mathrm{R} 1 \mathrm{~b})}{\mathrm{V}_{\mathrm{R} 1} \cdot \mathrm{~K}_{\mathrm{T}} \cdot \mathrm{Gctl}} \quad[\Omega] \tag{4}\\
\mathrm{C} 1 & =\frac{1}{\sqrt{10} \cdot \omega_{\mathrm{O}} \cdot \mathrm{R} 2} \quad[\mathrm{~F}] \tag{5}\\
\mathrm{C} 2 & =10 \cdot \mathrm{C} 1
\end{aligned} \quad[\mathrm{~F}] \quad \begin{aligned}
& \text { where, } \mathrm{J}: \quad \text { Moment of inertia }\left[\mathrm{kg} \cdot \mathrm{~cm}^{2} \cdot \mathrm{~s}^{2}\right] \\
& \mathrm{K}_{\mathrm{T}}: \text { Torque constant }[\mathrm{kg} \cdot \mathrm{~cm} / \mathrm{A}] \tag{6}\\
& \mathrm{Gctl}: \text { Current control } \mathrm{amp} \text { gain from pin } 22 \text { to pin } 17(=0.5)
\end{align*}
$$

4. It is notice that rotation speed error Nerror is caused by leak current Icer2 on pin 22 and this error depend on R1a and R1b as following equation.

$$
\begin{equation*}
\text { Nerror }=\text { Icer2 } \cdot \frac{(\mathrm{R} 1 \mathrm{a}+\mathrm{R} 1 \mathrm{~b})}{\mathrm{VR} 1} \cdot 100 \quad[\%] \tag{7}
\end{equation*}
$$

where, Icer2: leak current on pin 22 [A]
5. Oscillation period $\mathrm{t}_{\text {сомм }}$ on pin 39 which period determine the start up characteristics, is should be chosen as following equation.
$\mathrm{t}_{\text {COMM }}=\frac{1}{8} \cdot \sqrt{\frac{\mathrm{~J}}{\mathrm{P} \cdot \mathrm{K}_{\mathrm{T}} \cdot \text { Ispnmax }}}$
to $\frac{1}{4} \cdot \sqrt{\frac{\mathrm{~J}}{\mathrm{P} \cdot \mathrm{K}_{\mathrm{T}} \cdot \text { Ispnmax }}}$
[s]
(8)
6. The capacitor C 103 on pin 39 can be determined by $\mathrm{t}_{\text {сомм }}$ and following equation.

$$
\begin{equation*}
\mathrm{C} 103=\frac{1}{4} \cdot \frac{\mathrm{VR} 1}{\mathrm{R} 1 \mathrm{a}+\mathrm{R} 1 \mathrm{~b}} \cdot \frac{\mathrm{t}_{\mathrm{COMM}}}{\mathrm{Vth}_{H}-\mathrm{Vth}} \tag{9}
\end{equation*}
$$

where, $\mathrm{Vth}_{\mathrm{H}}$: Threshold voltage on start up circuit [V] (=2.0)
Vth $:$: Threshold voltage on start up circuit [V] (=0.5)
7. LVI operatig voltage Vsd1, Vsd2 and its hysteresis voltage Vhys1, Vhys2 can be determined by following equations.
for $V_{\text {ss }}$
Vsd1 $=\left(1+\frac{\mathrm{R} 101}{\mathrm{R} 102}\right) \cdot$ Vth4 $\quad[\mathrm{V}]$
Vhys1 $=\left(1+\frac{\mathrm{R} 101}{\mathrm{R} 102}\right) \cdot$ Vhyspm $\quad[\mathrm{V}]$

HITACHI

for Vps
Vsd2 $=\left(1+\frac{\mathrm{R} 103}{\mathrm{R} 104}\right) \cdot$ Vth3 $\quad[\mathrm{V}]$
Vhys2 $=\left(1+\frac{\mathrm{R} 103}{\mathrm{R} 104}\right) \cdot$ Vhyspm [V]
where, Vth3, Vth4: Threshold voltage on pin 37 and pin 76 [V] (= 1.39)
Vhyspm: Hysteresis voltage on pin 37 and pin 76 [mV] (= 40)
Shut down voltage Vsd1, Vsd2 can be designed by the following range.
Vsd1 ≥ 4.25 [V], Vsd2 ≥ 10 [V]
8. The delay time $t_{D L Y}$ of POR for power on reset is determined as follows.
$\mathrm{t}_{\mathrm{DLY}}=\frac{\mathrm{C} 106 \cdot \mathrm{Vth} 5}{\mathrm{I}_{\mathrm{CH} 3}} \quad[\mathrm{~s}]$
where, Vth4: Threshold voltage on pin 38 [V] (= 1.4)
$\mathrm{I}_{\text {СН3 }}$: Charge current on pin $38[\mu \mathrm{~A}](=10)$
9. The differential voltage ($\mathrm{Vctl}-\mathrm{V}_{\text {REF1 }}$) using for control of VCM driver depend on PWMDAC inputs LSB, MSB as follows.
$\mathrm{Vctl}-\mathrm{V}_{\mathrm{REF} 1}=2 \cdot \mathrm{~V}_{\mathrm{REF} 1} \cdot \frac{\mathrm{D}_{\mathrm{PWM}}-50}{100} \cdot \frac{\mathrm{R} 6}{\mathrm{R} 5} \cdot \mathrm{H}_{\mathrm{FLT}}(\mathrm{s})$
where, $\mathrm{D}_{\text {PWM }}$: Duty cycle on PWMIN [\%]
$\mathrm{H}_{\text {fLT(S) }}$: Transfer function from pin 62 (PWMOUT) to pin 64 (Vctl) as shown in equation (17)

To be satisfied with above equation (15), it is notice that the ratio of $R 6$ to $R 7$ must be choosen as shown below.
$\frac{\mathrm{R} 8}{\mathrm{R} 7}=2 \cdot \frac{\mathrm{R} 6}{\mathrm{R} 5} \cdot \frac{1}{1-\frac{\mathrm{R} 6}{\mathrm{R} 5}}$
$\mathrm{H}_{\mathrm{FLT}}(\mathrm{s})$
$=\frac{1}{\left[\begin{array}{l}1+\mathrm{s} \cdot\left[\mathrm{C} 5 \cdot \mathrm{R} / /-\mathrm{C} 3 \cdot(\mathrm{R} / /+\mathrm{R} 3) \cdot \frac{\mathrm{R} 6}{\mathrm{R} 5}+\mathrm{C} 4 \cdot(\mathrm{R} / /+\mathrm{R} 3+\mathrm{R} 4)\right] \\ +\mathrm{s}^{2} \cdot\left[\mathrm{C} 5 \cdot \mathrm{C} 4 \cdot \mathrm{R} / / \cdot(\mathrm{R} 3+\mathrm{R} 4)-\mathrm{C} 5 \cdot \mathrm{C} 3 \cdot \mathrm{R} / / \cdot \mathrm{R} 3 \cdot \frac{\mathrm{R} 6}{\mathrm{R} 5}+\mathrm{C} 3 \cdot \mathrm{C} 4 \cdot \mathrm{R} 4 \cdot(\mathrm{R} / /+\mathrm{R} 3)\right] \\ +\mathrm{s}^{3} \cdot \mathrm{C} 3 \cdot \mathrm{C} 4 \cdot \mathrm{C} 5 \cdot \mathrm{R} / / \cdot \mathrm{R} 3 \cdot \mathrm{R} 4\end{array}\right]}$
where, $\quad \mathrm{R} / /=\frac{\mathrm{R} 7 \cdot \mathrm{R} 8}{\mathrm{R} 7 \cdot \mathrm{R} 8}$
If you choose the R// << R3, then equation (17) can be simplified as following equation.
$H_{F L T}(s)=\frac{1}{1+\frac{s}{\omega_{O}}} \cdot \frac{1}{1+2 \cdot \zeta \cdot\left(\frac{s}{\omega n}\right)+\left(\frac{s}{\omega n}\right)^{2}}$

HITACHI

HA13561F

where,

$$
\begin{equation*}
\omega_{\mathrm{O}}=\frac{1}{\mathrm{C} 5 \cdot \mathrm{R} / /} \tag{20}
\end{equation*}
$$

$\omega n=\frac{1}{\sqrt{\mathrm{C} 3 \cdot \mathrm{C} 4 \cdot \mathrm{R} 3 \cdot \mathrm{R} 4}}$
$\zeta=\frac{\mathrm{C} 4 \cdot(\mathrm{R} 3+\mathrm{R} 4)-\mathrm{C} 3 \cdot \mathrm{R} 3 \cdot \frac{\mathrm{R} 6}{\mathrm{R} 5}}{2 \cdot \sqrt{\mathrm{C} 3 \cdot \mathrm{C} 4 \cdot \mathrm{R} 3 \cdot \mathrm{R} 4}}$
10. The relationship between the output current Ivcm and the input voltage ($\mathrm{VctI}-\mathrm{V}_{\text {REF1 }}$) on VCM driver is as follows.
$\operatorname{lvcm}(\mathrm{s})=\left(\mathrm{Vctl}-\mathrm{V}_{\mathrm{REF} 1}\right) \cdot \mathrm{Kvcm} \cdot \frac{1}{\mathrm{Rs}} \cdot \mathrm{Hvcm}(\mathrm{s})$
where, Vctl: Input control voltage for VCM driver on pin 64 [V]
$\mathrm{V}_{\text {REF } 1}$: \quad Reference voltage on pin 61 [V] (= 4.6)
Kvcm: DC gain of VCM driver
(= 1.82 for High gain mode)
(= 0.45 for Low gain mode)
Hvem(s): Transfer function of VCM driver as shown following equation
$\operatorname{Hvcm}(\mathrm{s})=\frac{1}{1+2 \cdot \zeta_{\mathrm{VCM}} \cdot\left(\frac{\mathrm{s}}{\omega_{\mathrm{VCM}}}\right)+\left(\frac{\mathrm{s}}{\omega_{\mathrm{VCM}}}\right)^{2}}$
where,
$\omega_{\mathrm{VCM}}=\sqrt{\omega_{\mathrm{P}} \cdot \frac{\mathrm{Rs}}{\mathrm{Lm}}}$
$\zeta_{\mathrm{VCM}}=\frac{1}{2} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Rs}}\right) \cdot \sqrt{\frac{1}{\omega_{\mathrm{P}}} \cdot \frac{\mathrm{Rs}}{\mathrm{Lm}}}$
where, $\omega \mathrm{p}$: Bandwidth of internal power amplifiers for VCM driver [rad/s]
$\left(=3 \cdot \pi \cdot 10^{6}\right)$
Lm: Inductance of the VCM coil [H]
R_{L} : Resistance of the VCM coil $[\Omega]$
and from above equations the -3 dB bandwidth $\mathrm{f}_{\mathrm{VCMC}}$ of VCM driver is as following equation.
$f_{\mathrm{VCMC}}=\frac{\omega_{\mathrm{VCM}}}{2 \cdot \pi} \cdot \sqrt{\left[1-2 \cdot \zeta_{\mathrm{VCM}}{ }^{2}\right]+\sqrt{\left[2 \cdot \zeta_{\mathrm{VCM}^{2}}-1\right]^{2}+1}}$

HITACHI

11. The frequency response of VCM driver maybe have a gain peaking because of the resonation of the motor coil impedance. If you want to tune up for this characteristics, you can reduce the peaking by additional snubber circuit R_{x} and C_{x} as follows.

Figure 1 VCM Driver Block Diagram

(for example) $\mathrm{R}_{\mathrm{L}}=14.7 \Omega, \mathrm{R}_{\mathrm{S}}=1 \Omega, \mathrm{~L}=1.7 \mathrm{mH}$, Gain $=\mathrm{L}$
12. The retract current Iret is determined by following equation.

Iret $=\frac{\text { Vretpow }-\mathrm{Vsat}(\text { Qret })-\mathrm{V}_{\mathrm{F}}(\mathrm{D} 1)-\text { Vsat }_{\mathrm{VL}}}{\mathrm{R} 108+\mathrm{Rs}+\mathrm{R}_{\mathrm{L}}}$
where, Vretpow: Applied voltage on pin 78 [V]
Vsat (Qret): Saturation voltage of Qret [V]
V_{F} (D1): Foward voltage of D1 [V]

HITACHI

HA13561F

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$				
Item	Symbol	Rating	Unit	Notes
Power supply voltage	Vps	+15	V	1
Signal supply voltage	V_{Ss}	+7	V	2
Input voltage	V_{IN}	V_{SS}	V	3
Output current-Spindle	lospn (Peak)	1.8	A	
	lospn (DC)	1.2	A	
Output current-VCM	lovcm (Peak)	1.2	A	
	lovcm (DC)	0.8	A	
Power dissipation	P_{T}	5	W	
Junction temperature	Tj	+150	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes: 1. Operating voltage range is 10.2 V to 13.8 V .
2. Operating voltage range is 4.25 V to 5.75 V
3. Applied to Pin 40, 41, 42, 44, 56, 57 and pin 62
4. Operating junction temperature range is $\mathrm{Tjop}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
5. ASO of upper and lower power transistor are shown below.

Operating locus must be within the ASO.
6. The OTSD (Over Temperature Shut Down) function is built in this IC to avoid same damages by over heat of this chip. However, please note that if the junction temperature of this IC becomes higher than the operating maximum junction temperature (Tjopmax $=125^{\circ} \mathrm{C}$), the reliability of this IC often goes down.
7. Thermal resistance: $\theta \mathrm{j}-\mathrm{a} \leq 35^{\circ} \mathrm{C} / \mathrm{W}$ with 6 layer multi glass-epoxy board.

Figure 2 ASO of Output Stages (Spindle)

HITACHI

Figure 3 ASO of Output Stages (VCM)

HITACHI

HA13561F

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vps}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}\right)$

HITACHI

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vps}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}\right)$ (cont)

HITACHI

HA13561F

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vps}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=5 \mathrm{~V}\right)$ (cont)

HITACHI

HA13561F
Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vps}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=5 \mathrm{~V}\right)$ (cont)

Item		Symbol	Min	Typ	Max	Unit	Test Conditions	Applicable Pins	Note
OP Amp	Output low voltage	Volop	-	-	1.1	V	lout $=1.0 \mathrm{~mA}$	64	
Comparator	Input sensitivity	Vmin2	± 9	0	-	mV		2, 3, 60	
	Output low voltage	Volcp	-	-	0.4	V	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$	60	
	Output high voltage	Vohcp	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & -1.8 \end{aligned}$	-	$\mathrm{V}_{\text {ss }}$	V	$\mathrm{I}_{0}=1 \mathrm{~mA}$		
Vref1	Output voltage	Vref1	-	4.6	$\pm 3 \%$	V	$\mathrm{I}_{0}=20 \mathrm{~mA}$	61	
	Output resistance	Ro1	-	-	5.0	Ω	$\mathrm{I}_{0}=20 \mathrm{~mA}$		
Power monitor	Threshold voltage	Vth3	-	1.39	$\begin{aligned} & +3 \% \\ & -2 \% \end{aligned}$	V	$\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}$	76	2
	Hysteresis	Vhyspm 1	25	40	55	mV	$\mathrm{V}_{\text {SS }}=5 \mathrm{~V}$		
	Threshold voltage	Vth4	-	1.38	$\begin{aligned} & +3 \% \\ & -2 \% \end{aligned}$	V	$\mathrm{V}_{\text {SS }}=4 \mathrm{~V}$	37	2
	Hysteresis	Vhyspm 2	25	40	55	mV	$\mathrm{V}_{\text {SS }}=4 \mathrm{~V}$		
POR	Output low voltage	$\mathrm{V}_{\text {OL2 }}$	-	-	0.4	V	$\mathrm{I}_{0}=1 \mathrm{~mA}$	45	
		$\mathrm{V}_{\text {OL3 }}$	-	-	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{ss}}=\mathrm{Vps}=1.0 \mathrm{~V} \end{aligned}$		
	Output leak current	Icer5	-	-	± 10	$\mu \mathrm{A}$	Vpor $=7 \mathrm{~V}$		
	Threshold voltage	Vth5	-	1.4	$\pm 5 \%$	V		38	
	Charge current	$\mathrm{I}_{\text {CH3 }}$	-	12	$\pm 25 \%$	$\mu \mathrm{A}$			
	Discharge current	$\mathrm{I}_{\text {DIS3 }}$	10	-	-	mA			
OTSD	Operating temperature	Tsd	125	150	-	${ }^{\circ} \mathrm{C}$			1
	Hysteresis	Thys	-	25	-	${ }^{\circ} \mathrm{C}$			1

Notes: 1. Design guide only.
2. Variations of threshold voltage V th3 and V th4 depending on the power supply $\mathrm{V}_{\text {ss }}$ are shown in Figure. 4.

HITACHI

HA13561F

Figure 4

HITACHI

Package Dimensions

Unit: mm

HITACHI

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.
Semiconductor \& Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan $\quad \vdots \mathrm{http}: / / w w w . h i t a c h i . c o . j p / S i c d / i n d x . h t m$
For further information write to:

Hitachi Semiconductor	Hitachi Europe GmbH	Hitachi Asia Pte. Ltd.	Hitachi Asia (Hong Kong) Ltd.
(America) Inc.	Electronic components Group	16 Collyer Quay \#20-00	Group III (Electronic Components)
179 East Tasman Drive,	Dornacher Stra§e 3	Hitachi Tower	7/F., North Tower, World Finance Centre,
San Jose, CA 95134	D-85622 Feldkirchen, Munich	Singapore 049318	Harbour City, Canton Road, Tsim Sha Tsui,
Tel: <1> (408) 433-1990	Germany	Tel: 535-2100	Kowloon, Hong Kong
Fax: <1>(408) 433-0223	$\begin{aligned} & \text { Tel:<49> (89) } 9 \text { 9180-0 } \\ & \text { Fax: <49> (89) } 9293000 \end{aligned}$	Fax: 535-1533	Tel: <852> (2) 7359218 Fax: <852> (2) 7300281
	Hitachi Europe Ltd.	Hitachi Asia Ltd.	Telex: 40815 HITEC HX
	Electronic Components Group.	Taipei Branch Office	
	Whitebrook Park	3F, Hung Kuo Building. No.167,	
	Lower Cookham Road	Tun-Hwa North Road, Taipei (105)	
	Maidenhead	Tel: <886> (2) 2718-3666	
	Berkshire SL6 8YA, United Kingdom	Fax: <886> (2) 2718-8180	
	Tel: <44> (1628) 585000		
	Fax: <44> (1628) 778322		

HITACHI

