DESCRIPTION

The M52338FP is a semiconductor integrated circuit containing an interface circuit which is necessary to drive an active matrix liquid crystal panel.

FEATURES

- γ correction circuit is built in to correct non-linearity of luminance characteristics caused by applied voltage which is peculiar to a liquid crystal panel.
- By combining with Mitsubishi video/chroma signal processing ICs, M52042FP (NTSC) and M52045FP (PAL), low cost and optimal system configuration is possible.

APPLICATION

Active matrix liquid crystal color television

RECOMMENDED OPERATING CONDITION

Supply voltage		Operating supply voltage	Recommended supply voltage
$\mathrm{GND}=0 \mathrm{~V}, \mathrm{VCC1}=\mathrm{Vcc} 2$	Vcc1	4.0 to 5.5 V	4.5 V
	Vcc2		-7.5 V
	VEE	-7.0 to 8.5 V	

PIN CONFIGURATION (TOP VIEW)

Outline 32P2U-B

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Vcc1	Supply voltage 1	5.0	V
Vcc2	Supply voltage 2	5.5	V
VEE	Supply voltage 3	-8.5	V
Pd	Power dissipation	580	mW
Topr	Operating temperature	-20 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55 to +150	${ }^{\circ} \mathrm{C}$
Vmax	Electrostatic discharge	± 200	V

ELECTRICAL CHARACTERISTICS
($\mathrm{VCC1}=\mathrm{VCC2}=4.5 \mathrm{~V}, \mathrm{VEE}=7.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{HD}$ pulse must be input, unless otherwise noted)

Symbol	Parameter	Test point	Input point	Input SG	Test conditions										Note(FRP1)	Limits			Unit
					P7 ${ }^{\text {P }}$		P13P	P15P1	18 P20	P23P	P24P2	P25 P26	6P28			Min.	Typ.	Max.	
IcC1	Circuit current 1	P32	-	-												-	36	45	mA
IcC2	Circuit current 2	P10	-	-												-	26	30	mA
comin 1	Minimum common output 1	P14	P12	FRP2			4.5									1.0	1.2	2.0	VP-P
cominT1	Minimum common center voltage level 1	P14	P12	FRP2			4.5									-1.65	-1.45	-1.25	V
comax1	Maximum common output 1	P14	P12	FRP2			GND									8.0	8.8	9.5	VP-P
comaxT1	Maximum common center voltage level 1	P14	P12	FRP2			GND									-1.65	-1.45	-1.25	V
cothH1	Common through rate 1 (rising)	P14	P12	FRP2			GND									1.1	1.35	-	V/ $/ \mathrm{sec}$
cothL1	Common through rate 1 (falling)	P14	P12	FRP2			GND									1.1	1.35	-	V/ $/ \mathrm{sec}$
MA1	Maximum input level A1	$\begin{aligned} & \hline \text { P17 } \\ & \text { P19 } \\ & \text { P21 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \\ & \hline \end{aligned}$	Y							1.004 .5	4.5 v 4.5 V			4.5V	2.7	3.0	3.3	VP-P
MOA1	Offset 1 among channels at maximum input level A															-	0.0	200	mV
MB1	Maximum input level B1	$\begin{aligned} & \hline \text { P17 } \\ & \text { P19 } \\ & \text { P21 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \end{aligned}$	Y							1.004 .5	4.5V 4.5 V			GND	2.7	3.0	3.3	VP-P
MOB1	Offset 1 among channels at maximum input level B															-	0.0	200	mV
M1	Maximum input level difference 1														$\frac{\text { GND }}{4.5 \mathrm{~V}}$	-	0.0	300	mVP-P
P11	Pedestal voltage level 11	$\begin{array}{\|l\|} \hline \text { P17 } \\ \text { P19 } \\ \text { P21 } \\ \hline \end{array}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \\ & \hline \end{aligned}$	Y							GND 4.5	4.5 v 4.5 V			4.5 V	-4.90	-4.25	-3.90	V
PO11	Offset 1 among channels at pedestal voltage level 1															-	0.0	300	mV
P21	Pedestal voltage level 21	$\begin{aligned} & \hline \text { P17 } \\ & \text { P19 } \\ & \text { P21 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \\ & \hline \end{aligned}$	Y							GND 4.5	4.5 V 4.5 V			GND	0.10	0.75	1.10	V
PO21	Offset 1 among channels at pedestal voltage level 2															-	0.0	300	mV
S1	Center output voltage level 1															-2.40	-1.75	-1.60	V
SO1	Offset 1 among channels at center output voltage level															-	0.0	150	mV
A1	Output amplitude A1	$\begin{aligned} & \hline \text { P17 } \\ & \text { P19 } \\ & \text { P21 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \end{aligned}$	Y							1.5 v 4.5	4.5 V 4.5 V			4.5V	2.5	2.9	3.4	VP-P
OA1	Offset 1 among channels at output amplitude A															-	0.0	200	mV

ELECTRICAL CHARACTERISTICS (cont.)

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Parameter	Test	Input	Input SG	Test conditions										$\begin{array}{\|c\|} \hline \text { Note } \\ \text { (FRP1) } \end{array}$	Limits			Unit
		point	point		P7	Pg ${ }^{\text {P }}$		${ }^{15} \mathrm{P} 18$		P23 ${ }^{\text {P }}$	P24			P28 P30		Min.	Typ.	Max.	
SCmax1	Sub contrast control 1 (sub contrast=4.5V)	$\begin{aligned} & \hline \text { P17 } \\ & \text { P21 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P5 } \end{aligned}$	Y										$4.5 \mathrm{~V} \cdot \cdots,$	4.5V	1.45	1.75	1.95	Vp-P
SC1	Sub contrast control variance 1															2.10	2.45	2.80	V
BRmin1	Brightness control 1 (bright=GND)	$\begin{array}{\|l\|l\|} \hline \text { P17 } \\ \text { P19 } \\ \text { P21 } \end{array}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \end{aligned}$	Y						GND ${ }^{\text {a }}$	GND4.				IN	-8.7	-8.1	-7.5	Vp-P
BRopen1	Brightness control 1 (bright=open)	$\begin{array}{\|l} \hline \text { P17 } \\ \text { P19 } \\ \text { P21 } \end{array}$	$\begin{array}{\|l\|} \hline \text { P1 } \\ \text { P3 } \\ \text { P5 } \\ \hline \end{array}$	Y							GND4.	4.5V 4.5	4.5V		IN	-5.5	-4.8	-4.2	VP-P
BRmax1	Brightness control 1 (bright=4.5V)	$\begin{array}{\|l} \hline \text { P17 } \\ \text { P19 } \\ \text { P21 } \end{array}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \end{aligned}$	Y						4.5 V G	GND4.		. 5 V		IN	3.3	3.6	3.9	Vp-P
BR1	Brightness control variance 1															10.5	11.5	12.5	V
BRmin1	Brightness control offset 1 among channels (bright=GND)															0.0	0.0	300	mVP-P
BRmax1	Brightness control offset 1 among channels (bright=4.5V)															0.0	0.0	300	mVP-P
SBmiR1	Sub bias control 1 (sub bias=GND)	$\begin{array}{\|l} \hline \text { P17 } \\ \text { P21 } \end{array}$	$\begin{aligned} & \text { P1 } \\ & \text { P5 } \end{aligned}$	Y									4.5V		IN	-7.25	-7.00	-6.30	Vp-P
SBmax1	Sub bias control 1 (sub bias=4.5V)	$\begin{aligned} & \text { P17 } \\ & \text { P21 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P5 } \end{aligned}$	Y									. 5 V		IN	-3.05	-2.70	-2.15	Vp-P
SB1	Sub bias control variance 1															3.6	4.3	4.8	V
F11	Main frequency characteristics 11	$\begin{array}{\|l\|l} \hline \text { P17 } \\ \text { P19 } \\ \text { P21 } \end{array}$	$\begin{array}{\|l\|} \hline \text { P1 } \\ \text { P3 } \\ \text { P5 } \\ \hline \end{array}$	SYNC+ SWEEP							1.5 V 4.	4.5V 4.5	4.5V		GND	4.5	5.5	-	MHz
F21	Main frequency characteristics 21	$\begin{aligned} & \text { P17 } \\ & \text { P19 } \\ & \text { P21 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \end{aligned}$	SYNC+ sweep							1.5 V 4.	4.5V 4.5			4.5V	4.0	5.0	-	MHz
CC1	Cross talk 1 among channels	$\begin{aligned} & \hline \text { P17 } \\ & \text { P19 } \\ & \text { P21 } \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \end{aligned}$	Y							1.5 V 4.	4.5 V 4.5			IN	-	-	-45	dB
CS1	Main/EXT cross talk 1	$\begin{array}{\|l} \hline \text { P17 } \\ \text { P19 } \\ \text { P21 } \end{array}$	$\begin{aligned} & \text { P1 } \\ & \text { P3 } \\ & \text { P5 } \\ & \hline \end{aligned}$	Y							1.5 V 4.				IN	-	-	-45	dB

Note 1: Limits equivalent to the above are guaranteed when pin 7 is connected to GND and the mode is changed to EXT.

TYPICAL CHARACTERISTICS

THERMAL DERATING (MAXIMAM RATING)

AMBIENT TEMPERATURE $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

INTERFACE IC FOR ACTIVE MATRIX LIQUID CRYSTAL PANEL

ELECTRICAL CHARACTERISTICS TEST METHOD

ICC1,ICC2 Circuit current 1, 2

Measure quiescent current flowing into pins (1) and (10).

COmin1,COmax1 Common output 1

Input FRP2 and measure the output amplitude when voltage at pin (13) is changed to GND, and 4.5 V .

COminT1,COmaxT1 Common center voltage level 1

Input FRP2 and measure the center voltage level of output waveform when voltage at pin 113 is changed to GND, and 4.5 V .
cothH1, cothL1 Common through rate 1
Input FRP2 and measure through rates at rising point and falling point of the output waveform when voltage at pin (13) is connect-ed to GND.

MA1 Maximum input level A

Connect pin (22) to 4.5 V and measure the non-inverted output amplitude between pedestal level and white level at pins (17),(19), and (21) when signal Y (1.5Vp-p) is input. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

MOA1 Offset among channels at maximum input level A Based on the results of maximum input level A, calculate the difference in amplitude level among channels.

MB1 Maximum input level B
Connect pin (22) to GND and measure the inverted output amplitude between pedestal level and white level at pins(17),(19), and (21) when signal Y (1.5VP-P) is input. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

MOB1 Offset among channels at maximum input level B Based on the results of the maximum input level B, calculate the difference in amplitude level among channels.

M1 Maximum input level difference
Calculate difference in output amplitude between maximum input level A and level B of each channel.

P11 Pedestal voltage level 1
In inputting signal Y , measure output voltage at pins (17), (19), and (21) when pin (22) is 4.5 V and pin (24) is grounded. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

P011 Offset among channels at pedestal voltage level 1

Based on the results of pedestal voltage level 1, calculate offset among channels.

PO21 Pedestal voltage level 2

In inputting signal Y , measure output voltage at pins (17), (19), and (21) when voltage at pins (22) and (24) are connected to GND. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

PO21 Offset among channels at pedestal voltage level 2
Based on the results of pedestal voltage level 2, calculate offset among channels.

S1 Center output voltage level

Measure the center voltage level based on pedestal voltage levels 1 and 2 of each channel.
$M=($ pedestal voltage level 1 - pedestal voltage level 2) / 2
SO1 Offset among channels at center output voltage level
Based on the result of center output voltage level, measure offset among channels.

A1 Output amplitude A

In inputting signal Y , measure non-inverted output amplitude between pedestal level and white level at pins (17), (19), and (6) when pin (22) is 4.5 V and voltage at pin (24) is 1.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

OA1 Offset among channels at output amplitude A

Based on the results of output amplitude A, calculate the difference in output amplitude among channels.

B1 Output amplitude B
In inputting signal Y , measure non-inverted output amplitude between pedestal level and white level at pins (17), (19), and (20) when voltage at pin (22) is grounded and voltage at pin (24) is 1.5 V . Also, measure in the same way as above, when pin (7) is connected to GND and the mode is changed to EXT.

OB1 Offset among channels at output amplitude B Based on the results of output amplitude B, calculate the difference in output amplitude among channels.

L1 Linearity
Measure the difference in inverted/inverted output amplitude of the output waveform found as the results of output amplitude A and B. Also, measure in the same way as above, when pin (7) is connected to GND and the mode is changed to EXT.

W11 White balance 1

In inputting signal Y , measure white peak level of each channel when voltage at pin (22) and (24) are 4.5 V (in the state that peak limiter work). Also, measure in the same way as above when pin (7) is connected to 4.5 V and the mode is changed to EXT.

W011 Offset among channels at white balance 1

Based on the results of white balance 1, measure offset among channels.

W21 White balance 2
In inputting signal Y, measure white peak level of each channel when pin (22) is grounded and voltage at pin (24) is 4.5 V (in the state peak limiter works). Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

INTERFACE IC FOR ACTIVE MATRIX LIQUID CRYSTAL PANEL

WO21 Offset among channels at white balance 2

Based on the results of white balance 2, measure offset among channels.

$\gamma 11, \gamma 21 \quad \gamma 1$ control

In inputting signal Y , compare the voltage difference between pedestal level and the first or second gradation of output signal Y when voltage at pin (22) is 4.5 V , voltage at pin (24) is 1.5 V and voltage at pin (25) is 1.0 V with the difference when voltage at pin (25) is 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

$\gamma 21, \gamma 22 \quad \gamma 2$ control

In inputting signal Y , compare the voltage difference between the 9th or 8th gradation and white level of output signal Y when voltage at pin (22) is 4.5 V , voltage at pin (24) is 1.5 V , and voltage at pin (26) 1.0 V with the difference when voltage at pin (26) is 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

COmin1,COopen1,COmax1 Contrast control 1

In inputting signal Y ($0.2 \mathrm{VP-P}$), measure the amplitude of output signal of each channel when voltage at pin (2) is 4.5 V and voltage at pin (24) is changed to GND, open, and 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

COmaxG1 Contrast control MAX gain 1

In inputting signal $\mathrm{Y}(0.2 \mathrm{~V}-\mathrm{P})$, calculate the ratio of input signal amplitude to output amplitude of each channel when voltage at pins (22) and (24) are 4.5 V .
$\mathrm{M}=20 \log$ (output amplitude/input amplitude)

COmina,COopena,COmaxa Contrast control a

In inputting signal $Y\left(0.2 \mathrm{VP}_{\mathrm{P}-\mathrm{P})}\right.$, measure the amplitude of output signal of each channel when pin (22) is grounded and voltage at pin (24) is changed to GND, open, and 4.5 V . Also, measure in the same way as above, when pin (7) is connected to GND and the mode is changed to EXT.

COmaxa Contrast control MAX gain a

In inputting signal $Y(0.2 \mathrm{VP}-\mathrm{P})$, calculate the ratio of input signal amplitude to output amplitude of each channel when pin (22) is grounded and voltage at pin (24) is 4.5 V .
$\mathrm{M}=20 \log$ (output amplitude/input amplitude)

COminO1 Non-inverted/inverted contrast control offset 1 (contrast=4.5V)

Compare values of contrast 1 and a of each channel measured when voltage at pin (24) is 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

COmax01 Non-inverted/inverted contrast control offset 1 (contrast=GND)

Compare values of contrast 1 and a of each channel measured when pin (24) is connected to GND. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

COA1 Non-inverted contrast control offset 1

 among channels (contrast=4.5V)Calculate the difference in amplitude of contrast 1 measured when voltage at pins (22) and (24) are 4.5 V among channels. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

COB1 Inverted contrast control offset 1 among

 channels (contrast=4.5V)Calculate the difference in amplitude of contrast a measured when pins (22) is grounded and voltage at pin (24) is 4.5 V among channels. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

SCmin1,SCmax1 Sub contrast control

In inputting signal $\mathrm{Y}(0.2 \mathrm{VP}-\mathrm{P})$, measure the output amplitude of Rch and Bch when voltage at pin (22) is 4.5 V , voltage at pin 240 is 1.0 V and voltage at pin (28) or (30) is changed to GND and 4.5V. Also, measure in the same way as above when pin (0) is connected to GND and the mode is changed to EXT.

SC1 Sub contrast control variance

Based on the results of sub contrast control, calculate the variance.
BRmin1,BRopen1,BRmax1 Brightness control
In inputting signal Y and FRP1, measure of the output amplitude of each channel when pin.(24) is grounded and voltage at pin (23) is changed to GND, open and 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

BR1 Brightness control variance

Based on the results of brightness control, calculate the variance of each channel.

BRmin1 Brightness control offset among channels

Calculate the difference in output amplitude of brightness measured when pins (24). and (23) are grounded among channels. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

BRmax1 Brightness control offset among channels

Calculate the difference in output amplitude of brightness measured when pin (24) is grounded and voltage at pin (23) is 4.5 V among channels. Also, measure in the same way as above when pin ${ }^{7}$) is connected to GND and the mode is changed to EXT.

SBmiR1, SBmax1 Sub bias control

In inputting signal Y and FRP1, measure output amplitude of Rch and Bch when pin (24) is grounded and voltage at pin (20) or (18) is changed to GND and 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

SB1 Sub bias control variance

Based on the results of sub bias control, calculate the variance.

F11 Frequency characteristics 1
In inputting sync+sweep waveform ($500 \mathrm{mVP}-\mathrm{p}$), measure the cutoff frequency of each channel when pin0(22) is grounded. Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

F21 Frequency characteristics 2
In inputting sync+sweep waveform ($500 \mathrm{mVP-p}$), measure the cutoff frequency of each channel when voltage at pin(22) is 4.5 V . Also, measure in the same way as above when pin (7) is connected to GND and the mode is changed to EXT.

CC1 Crosstalk among channels
Input sync $+1.0 \mathrm{MHz}(500 \mathrm{mVP}-\mathrm{P})$ only to pin (1) and measure the amplitude of output waveform, VR, VG, and VB, at pins (17), (19), and (21) respectively. Crosstalk is calculated as follows.

$$
\mathrm{M}=20 \log \frac{\mathrm{VG} \text { or } \mathrm{VB}_{\mathrm{B}}}{\mathrm{~V}_{\mathrm{R}}}[\mathrm{~dB}]
$$

CS1 MAIN/EXT crosstalk
Input sync $+1.0 \mathrm{MHz}(500 \mathrm{mVP}-\mathrm{P})$ only to pin (7) and measure the amplitude of output waveform at pin (21) (VMR). Then, connect pin (7) to GND and measure the output amplitude when the same signal is input (VER). Crosstalk is calculated as follows.
$\mathrm{M}=20 \log \frac{\mathrm{VG}_{\mathrm{G}} \text { or } \mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{R}}}[\mathrm{dB}]$

Note 4: When contrast and sub contrast parameters are measured, input signal is set to 0.2VP-P because a limiter may work when normal input signal is input.

INPUT/OUTPUT SIGNAL

APPLICATION EXAMPLE

DESCRIPTION OF PIN

DESCRIPTION OF PIN (cont.)

Pin No.	Name	Peripheral circuit pins
(17)	R OUT (Rch output)	
(19)	G OUT (Gch output)	
(21)	B OUT (Bch output)	$\begin{array}{lll} V_{E E} & 0 \\ \hline 0 . \\ \hline \end{array}$
(18)	SUB BIAS R (Sub bias control R)	
(20)	SUB BIAS B (Sub bias control B)	
(2)	FRP 1 (FRP 1 input)	
(23)	BRIGHT (Bright control)	

