AN5452

IC for landing correction

\square Overview

The AN5452 is an IC to drive a landing correction coil of CRT monitor. The circuit is suitable for low power consumption design.

Features

- Built-in power amplifier ($\pm 200 \mathrm{~mA}$)
- Low standby current (typ.: 2 mA)
- Incorporating 2 circuits

Applications

- CRT monitors

Block Diagram

- Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Control block power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 1}\right)$	7	Landing1 positive output
2	Output block power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 2}\right)$	8	Landing2 negative output
3	Output block power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 3}\right)$	9	Output block GND (GND2)
4	Landing1 control input	10	Landing2 positive output
5	Landing2 control input	11	Landing2 negative output
6	Output block GND (GND3)	12	Control block GND (GND1)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	13.5	V
	$\mathrm{~V}_{\mathrm{CC} 2}$	13.5	
	$\mathrm{~V}_{\mathrm{CC} 3}$	13.5	V
Supply current	$\mathrm{I}_{\mathrm{CC} 1}$	35	
	$\mathrm{I}_{\mathrm{CC} 2}$	200	
	$\mathrm{I}_{\mathrm{CC} 3}$	200	mW
Power dissipation ${ }^{* 2}$	P_{D}	1171	${ }^{\circ} \mathrm{C}$
Operating ambient temperature ${ }^{* 1}$	$\mathrm{~T}_{\text {opr }}$	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature ${ }^{* 1}$	$\mathrm{~T}_{\text {stg }}$	-55 to +150	

Note) 1. $* 1$: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
*2: The power dissipation for the independent package (without a heat sink) at $\mathrm{T}_{\mathrm{a}}=75^{\circ} \mathrm{C}$. Refer to " Technical Information" for details.
3. Be sure to comply with "■ Usage Notes" for the sequence of turning on power supply.
4. Refer to "■ Usage Notes" in case of using the IC at $\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{CC} 3} \leq 8 \mathrm{~V}$

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	10.8 to 13.2	V
	$\mathrm{~V}_{\mathrm{CC} 2}$	7.0 to 13.2	
	$\mathrm{~V}_{\mathrm{CC} 3}$	7.0 to 13.2	
Landing1 control input	V_{4-12}	0 to 6	0 to 6
Landing2 control input	V_{5-12}	-200 to +200	V
Landing1 positive output	I_{7}	-200 to +200	mA
Landing1 negative output	I_{8}	-200 to +200	mA
Landing2 positive output	I_{10}	-200 to +200	mA
Landing2 negative output	I_{11}	mA	

Recommended Operating Range (continued)

Parameter	Symbol	Range	Unit
Peak current	$\mathrm{I}_{7(\mathrm{P})}$	-0.7 to +0.7	A
	$\mathrm{I}_{8(\mathrm{P})}$	-0.7 to +0.7	
	$\mathrm{I}_{10(\mathrm{P})}$	-0.7 to +0.7	
	$\mathrm{I}_{11(\mathrm{P})}$	-0.7 to +0.7	

Note) The peak current characteristic is the reference value for design. The shipping inspection of it is not performed. For the evaluating conditions, refer to " Electrical Characteristics • Explanations of testing method".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Circuit current 1	$\mathrm{I}_{\mathrm{CC} 1}$	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	1.5	3.0	4.5	mA
Circuit current 2	$\mathrm{I}_{\mathrm{CC} 2}$	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	-	0	1	mA
Circuit current 3	$\mathrm{I}_{\mathrm{CC} 3}$	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	-	0	1	mA
Circuit voltage 7	V_{7-6}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	4.1	4.5	4.9	V
Circuit voltage 8	V_{8-6}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	4.1	4.5	4.9	V
Circuit voltage 10	V_{10-9}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	4.1	4.5	4.9	V
Circuit voltage 11	V_{11-9}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=12 \mathrm{~V}$	4.1	4.5	4.9	V
Landing1 output voltage 1	$\mathrm{E}_{1(1)}$	$\mathrm{V}_{7}-\mathrm{V}_{8}$ at $\mathrm{V}_{4}=2.5 \mathrm{~V}$	-0.3	0.0	+0.3	V
Landing1 output voltage 2	$\mathrm{E}_{1(2)}$	$\mathrm{V}_{7}-\mathrm{V}_{8}$ at $\mathrm{V}_{4}=5 \mathrm{~V}$	+5.1	+5.5	+5.9	V
Landing1 output voltage 3	$\mathrm{E}_{1(3)}$	$\mathrm{V}_{7}-\mathrm{V}_{8}$ at $\mathrm{V}_{4}=0 \mathrm{~V}$	-5.9	-5.5	-5.1	V
Landing2 output voltage 1	$\mathrm{E}_{2(1)}$	$\mathrm{V}_{10}-\mathrm{V}_{11}$ at $\mathrm{V}_{5}=2.5 \mathrm{~V}$	-0.3	0.0	+0.3	V
Landing2 output voltage 2	$\mathrm{E}_{2(2)}$	$\mathrm{V}_{10}-\mathrm{V}_{11}$ at $\mathrm{V}_{5}=5 \mathrm{~V}$	+5.1	+5.5	+5.9	V
Landing2 output voltage 3	$\mathrm{E}_{2(3)}$	$\mathrm{V}_{10}-\mathrm{V}_{11}$ at $\mathrm{V}_{5}=0 \mathrm{~V}$	-5.9	-5.5	-5.1	V

- Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Landing1 output fluctuation with high-level supply voltage	$\Delta \mathrm{E}_{1} /$	$\mathrm{V}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V} \rightarrow 13.2 \mathrm{~V}$, $\Delta \mathrm{E}$ at $\mathrm{V}_{\mathrm{CC} 2,3}=12 \mathrm{~V} \rightarrow 13.2 \mathrm{~V}$	-0.2	-	+0.2
Landing1 output fluctuation with low-level supply voltage	$\Delta \mathrm{E}_{1} /$ $\mathrm{V}_{\mathrm{CCI}}$	$\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V} \rightarrow 10.8 \mathrm{~V}$, $\Delta \mathrm{E}$ at $\mathrm{V}_{\mathrm{CC} 2,3}=12 \mathrm{~V} \rightarrow 10 \mathrm{~V}$	-0.2	-	+0.2	V
Landing2 output fluctuation with high-level supply voltage	$\Delta \mathrm{E}_{2} /$ $\mathrm{V}_{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V} \rightarrow 13.2 \mathrm{~V}$, $\Delta \mathrm{E}$ at $\mathrm{V}_{\mathrm{CC} 2,3}=12 \mathrm{~V} \rightarrow 13.2 \mathrm{~V}$	-0.2	-	+0.2	V
Landing2 output fluctuation with low-level supply voltage	$\Delta \mathrm{E}_{2} /$ $\mathrm{V}_{\mathrm{CCI}}$	$\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V} \rightarrow 10.8 \mathrm{~V}$, $\Delta \mathrm{E}$ at $\mathrm{V}_{\mathrm{CC} 2,3}=12 \mathrm{~V} \rightarrow 10 \mathrm{~V}$	-0.2	-	+0.2	V
Landing1 output fluctuation with temperature	$\Delta \mathrm{E}_{1} / \mathrm{T}_{\mathrm{a}}$	$\Delta \mathrm{E}$ at $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C} \rightarrow-25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C} \rightarrow+70^{\circ} \mathrm{C}$	-0.2	-	+0.2	V
Landing2 output fluctuation with temperature	$\Delta \mathrm{E}_{2} / \mathrm{T}_{\mathrm{a}}$	$\Delta \mathrm{E}$ at $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C} \rightarrow-25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{C} \rightarrow+70^{\circ} \mathrm{C}$	-0.2	-	+0.2	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Explanations of testing method

Conditions at evaluating a peak current

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Pin voltage DC (V)
1	(1) $\longrightarrow \mathrm{V}_{\mathrm{CC} 1}$	Control block voltage $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 1}\right)$: Power supply pin for control block Apply DC 12 V .	12
2		Output block power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 2}\right)$: Power supply pin for landing2 output. Apply DC 12 V via protection resistor.	12
3		Output block power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right)$: Power supply pin for landing 1 output Apply DC 12 V via protection resistor.	12

\square Terminal Equivalent Circuits (continued)			
Pin No.	Equivalent circuit	Description	Pin voltage DC (V)
4		Landing 1 control input: Control input for landing1 Apply DC 0 V to $5 \mathrm{~V}($ typ. $=2.5 \mathrm{~V})$	-
5		Landing2 control input: Control input for landing2 Apply DC 0 V to $5 \mathrm{~V}($ typ. $=2.5 \mathrm{~V})$	-
6		GND3: Grounding pin for landing1 output	0
7		Landing1 positive output: Pin for landing 1 positive output. Output is given as the same polarity as pin 4	1.7 to 7.4

Usage Notes

1. The order of power supply turning on and off

1)	Turning on sequence	1st time	pin 2,	
		2nd time	pin 1	
2) Turning off sequence		1st time	pin 1	
		2nd time	pin 2,	(12

In the state that the pin 1 has been established, if pin 2 or pin 3 is decreased to under 5 V , an abnormal current of 50 mA to 300 mA flows to pin 1 , so that there is a possibility of breakdown of the IC. The above setting sequence should be observed.

It is confirmed that the IC operates normally after turning on and off SW 100 times at the interval of 1 second using the following circuit. Therefore, there will be no problem even if a current of 100 mA or less is allowed to flow to pin 1 for only about 50 ms at turning on and turning off the set power supply. However, we do not give guarantee by shipping test.
2. Circuit for checking abnormal current

3. The change in output voltage by the $\mathrm{V}_{\mathrm{CC} 2}$ and $\mathrm{V}_{\mathrm{CC} 3}$ voltage change

If pin $3\left(\mathrm{~V}_{\mathrm{CC} 3}\right)$ becomes a voltage of 8 V or less by making resistance value of R 3 larger, the upper limit of output voltage for pin 7 and pin 8 is restricted and then the output becomes as shown in figure 1 .

Similarly, if pin $2\left(\mathrm{~V}_{\mathrm{CC} 2}\right)$ voltage becomes 8 V or less by making resistance value R 2 larger, the output voltage of pin 10 and pin 11 becomes as shown in figure 2.

A care must be taken in case of using $\mathrm{V}_{\mathrm{CC} 2}$ and $\mathrm{V}_{\mathrm{CC} 3}$ at a voltage of 8 V or less.

Usage Notes (continued)

3. The change in output voltage by the $\mathrm{V}_{\mathrm{CC} 2}$ and $\mathrm{V}_{\mathrm{CC} 3}$ voltage change (continued)

Figure 1

Figure 2

Technical Information

- $\mathrm{P}_{\mathrm{D}}-\mathrm{T}_{\mathrm{a}}$ curve of HSIP012-P-0000

Application Circuit Example

