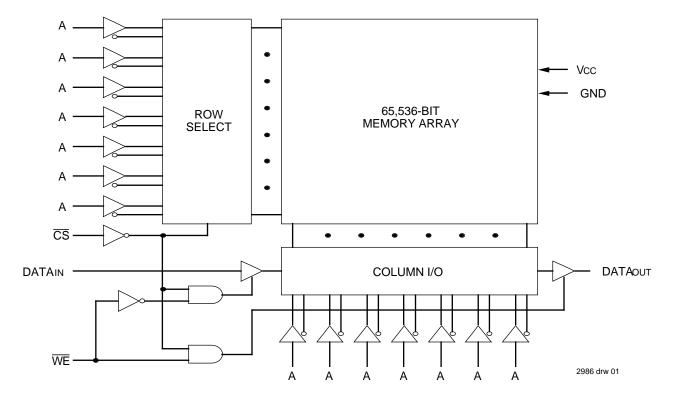
CMOS STATIC RAM 64K (64K x 1-BIT)

IDT7187S IDT7187L

FEATURES:

- High speed (equal access and cycle time)
 Military: 25/35/45/55/70/85ns (max.)
- Low power consumption
- Battery backup operation—2V data retention (L version only)
- JEDEC standard high-density 22-pin ceramic DIP, 22-pin leadless chip carrier
- Produced with advanced CMOS high-performance technology
- · Separate data input and output
- · Input and output directly TTL-compatible
- · Military product compliant to MIL-STD-883, Class B

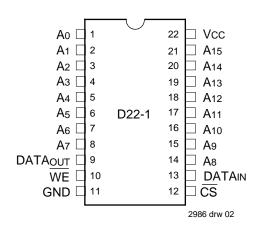
DESCRIPTION:

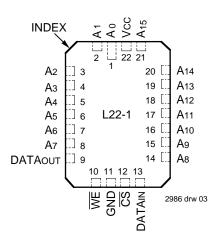

The IDT7187 is a 65,536-bit high-speed static RAM organized as 64K x 1. It is fabricated using IDT's high-performance, high-reliability CMOS technology. Access times as fast as 25ns are available.

Both the standard (S) and low-power (L) versions of the IDT7187 provide two standby modes—ISB and ISB1. ISB provides low-power operation; ISB1 provides ultra-low-power operation. The low-power (L) version also provides the capability for data retention using battery backup. When using a 2V battery, the circuit typically consumes only $30\mu W$.

Ease of system design is achieved by the IDT7187 with full asynchronous operation, along with matching access and cycle times. The device is packaged in an industry standard 22-pin, 300 mil ceramic DIP, or 22-pin leadless chip carriers.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.


FUNCTIONAL BLOCK DIAGRAM


The IDT logo is a registered trademark of Integrated Device Technology, Inc.

AUGUST 1996

PIN CONFIGURATIONS

DIP TOP VIEW

22-PIN LCC TOP VIEW

PIN DESCRIPTIONS

Name	Description
A0-A15	Address Inputs
CS	Chip Select
WE	Write Enable
Vcc	Power
DATAIN	Data Input
DATAout	Data Output
GND	Ground

2986 tbl 01

TRUTH TABLE(1)

Mode	<u>cs</u>	WE	Output	Power				
Standby	Н	Х	High-Z	Standby				
Read	L	Н	Dout	Active				
Write	L	L	High-Z	Active				
NOTE: 2986 tb								

1. $H = V_{IH}$, $L = V_{IL}$, X = don't care.

6.2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ТА	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
lout	DC Output Current	50	50	mA

NOTE: 2986 tbl 03

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	8	pF
Соит	Output Capacitance	Vout = 0V	8	pF

NOTE:

2986 tbl 04

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	٧
ViH	Input High Voltage	2.2	_	6.0	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTE:

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	−55°C to +125°C	0V	5V ± 10%
Commercial	0°C to +70°C	0V	5V ± 10%

2986 tbl 06

2986 tbl 05

DC ELECTRICAL CHARACTERISTICS

 $(VCC = 5.0V \pm 10\%)$

				IDT7	187S	IDT7		
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit
ILI	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	MIL. COM'L.	_	10 5	_	5 2	μΑ
ILO	Output Leakage Current	Vcc = Max., \overline{CS} = VIH, Vout = GND to Vcc	MIL. COM'L.	_	10 5	_	5 2	μΑ
Vol	Output Low Voltage	IOL = 10mA, VCC = Min. IOL = 8mA, VCC = Min.		_	0.5 0.4		0.5 0.4	V
Voн	Output High Voltage	IOH = -4mA, Vcc = Min.		2.4	_	2.4	_	V

2986 tbl 07

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(VCC = 5V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			_	7187S25 7187L25		7187S35 7187L35		7187S45 7187L45		7187S55/70 7187L55/70		7187S85 7187L85	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	S		105	_	105		105	_	105	1	105	mA
	$\overline{\text{CS}} = \text{VIL}$, Outputs Open $\text{VCC} = \text{Max.}$, $f = 0^{(2)}$	L	_	85	_	85	_	85	_	85		85	
ICC2	Dynamic Operating Current CS = VIL, Outputs Open Vcc = Max., f = fMAX ⁽²⁾	S	_	130	_	120	_	120	_	120		120	mA
		L	_	110	_	100		95	_	90		90	
lsв	Standby Power Supply Current (TTL Level)	S	_	55	_	50	_	50	_	50	_	50	mA
	CS ≥ VIH, VCC = Max., Outputs Open, f = fMAX ⁽²⁾	L	_	50	_	40	_	35	_	30/28		28	
ISB1	Full Standby Power	S	_	20	_	20	_	20	_	20	_	20	mA
	Supply Current (CMOS Level) $\overline{CS} \ge VHC$, $VCC=Max.$, $VIN \ge VHC$ or $VIN \le VLC$, $f=0^{(2)}$	L	_	1.5	_	1.5	_	1.5	_	1.5		1.5	

NOTES:

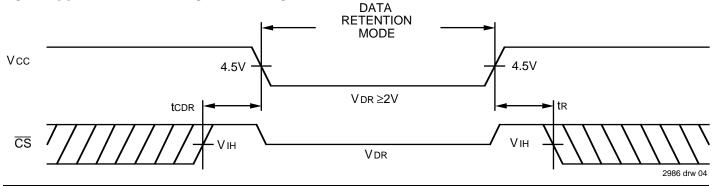
2986 tbl 08

1. All values are maximum guaranteed values.

2. At f = fMAX address and data inputs are cycling at the maximum frequency of read cycles of 1/trc. f = 0 means no input lines change.

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(L Version Only) VHC = VCC - 0.2V, VLC = 0.2V


					Typ. ⁽¹⁾ Vcc @		M Vo		
Symbol	Parameter	Test Condition		Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention	_		2.0	_	_	_	_	V
ICCDR	Data Retention Current		MIL. COM'L.	_	10 10	15 15	600 150	900 225	μА
tcdr ⁽³⁾	Chip Deselect to Data Retention Time	CS ≥ VHC VIN ≥ VHC 0	$\overline{CS} \ge VHC$ VIN $\ge VHC$ or $\le VLC$		_	_	_	_	ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	_	_	_	_	ns
ILI ⁽³⁾	Input Leakage Current			_	_	_	2	2	μА

NOTES:

2986 tbl 09

- 1. TA = +25°C.
- 2. trc = Read Cycle Time.
- 3. This parameter is guaranteed, but not tested.

LOW VCC DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2986 tbl 10

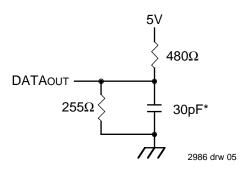


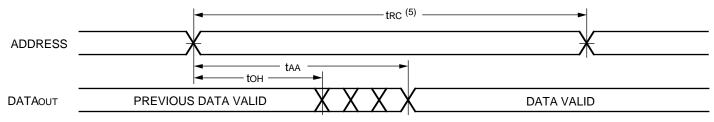
Figure 1. AC Test Load

Figure 2. AC Test Load (for thz, tLz, twz and tow)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

				7187S55 ⁽¹⁾ 7187L55 ⁽¹⁾		7187S70 ⁽¹⁾ 7187L70 ⁽¹⁾		7187S85 ⁽¹⁾ 7187L85 ⁽¹⁾				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle												
trc	Read Cycle Time	25	_	35/45	_	55	_	70	_	85	_	ns
tAA	Address Access Time	_	25	_	35/45	_	55	_	70	_	85	ns
tacs	Chip Select Access Time	_	25	_	35/45	_	55	_	70	_	85	ns
tон	Output Hold from Address Change	5	_	5	_	5	_	5	_	5	_	ns
tLZ ⁽²⁾	Output Selection to Output in Low-Z	5	_	5	_	5	_	5	_	5	_	ns
tHZ ⁽²⁾	Chip Deselect to Output in High-Z	_	12	_	17/20	_	30	_	30	_	40	ns
tPU ⁽²⁾	Chip Select to Power-Up Time	0	_	0	_	0	_	0	_	0	_	ns
tPD ⁽²⁾	Chip Deselect to Power-Down Time	_	20	_	30/35	_	35	_	35	_	40	ns


NOTES:

- 1. -55°C to +125°C temperature range only.
- 2. This parameter guaranteed but not tested.

2986 tbl 11

6.2 5

TIMING WAVEFORM OF READ CYCLE NO. 1^(1,2)

2986 drw 07

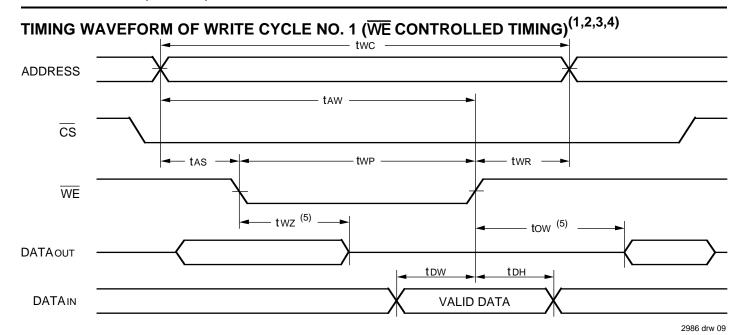
TIMING WAVEFORM OF READ CYCLE NO. 2^(1,3)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. CS is LOW for Read cycle.
- 3. Address valid prior to or coincident with \overline{CS} transition LOW.
- 4. Transition is measured ± 200 mV from steady state voltage with specified loading in Figure 2.
- 5. All Read cycle timings are referenced from the last valid address to the first transitioning address.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

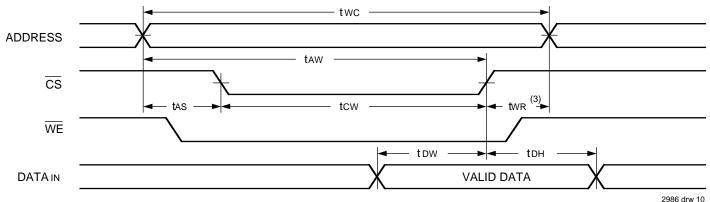
		7187S25 7187S35/45 ⁽¹⁾ 7 7187L25 7187L35/45 ⁽¹⁾ 7		7187S55 ⁽¹⁾ 7187L55 ⁽¹⁾		7187S70 ⁽¹⁾ 7187L70 ⁽¹⁾		7187S85 ⁽¹⁾ 7187L85 ⁽¹⁾				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write C	ycle											-
twc	Write Cycle Time	25	_	35/45	_	55	_	70		85	_	ns
tcw	Chip Select to End-of-Write	20	_	25/40	_	50	_	55	_	65	_	ns
taw	Address Valid to End-of-Write	20	_	25/40	-	50	_	55		65	_	ns
tas	Address Set-up Time	0	_	0	_	0	_	0		0	_	ns
twp	Write Pulse Width	20	_	20/25	_	35	_	40	_	45	_	ns
twr	Write Recovery Time	0	_	0	_	0	_	0	_	0	_	ns
tow	Data Valid to End-of-Write	15	_	15/25	_	25	_	30	_	35	_	ns
tDH	Data Hold Time	5	_	5	_	5	_	5	_	5	_	ns
twz ⁽²⁾	Write Enable to Output in High-Z	_	12		15/30		30	_	30	_	40	ns
tow ⁽²⁾	Output Active from End-of-Write	0	_	0	_	0	_	0	_	0	_	ns


6.2

NOTES:

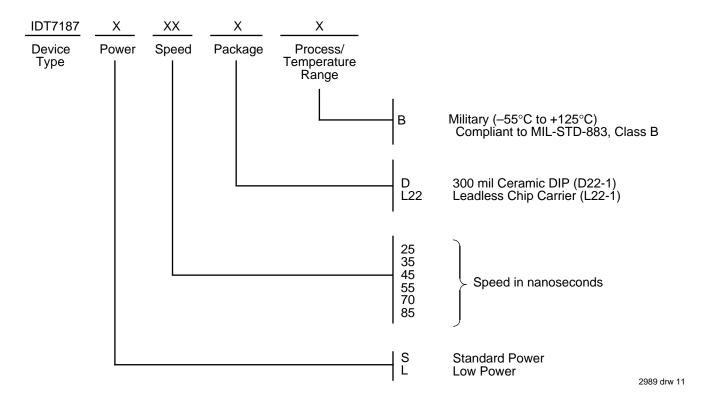
-55°C to +125°C temperature range only.
 This parameter guaranteed but not tested.

2986 tbl 12


6

NOTES:

- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. twn is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. If the $\overline{\text{CS}}$ LOW transition occurs simultaneously with or after the $\overline{\text{WE}}$ LOW transition, the outputs remain in the high-impedance state.
- 5. Transition is measured ±200mV from steady state with a 5pF load (including scope and jig).


TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)(1,2,4)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. twn is measured from the earlier of $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going HIGH to the end of the write cycle.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 5. Transition is measured ±200mV from steady state with a 5pF load (including scope and jig).

ORDERING INFORMATION

6.2