

Single-Chip Microcontroller with PLL and LCD Driver

Overview

The LC72322 is a single-chip microcontroller for use in electronic tuning applications. It includes on chip both LCD drivers and a PLL circuit that can operate at up to 150 MHz. It features a large-capacity ROM, a highly efficient instruction set, and powerful hardware.

Functions

- · Stack: Eight levels
- Fast programmable divider
- General-purpose counters: HCTR for frequency measurement and LCTR for frequency or period measurement
- LCD driver for displays with up to 56 segments (1/2 duty, 1/2 bias)
- Program memory (ROM): 4 k words by 16 bits
- Data memory (RAM): 256 4-bit digits
- All instructions are single-word instructions
- Cycle time: 2.67 µs, 13.33 µs, or 40.00 µs (option)
 Unlock FF: 0.55 µs detection, 1.1 µs detection
- Timer FF: 1 ms, 5ms, 25ms, 125ms
- Input ports*: One dedicated key input port and one
 - high-breakdown voltage port
- Output ports*: Two dedicated key output ports, one

high-breakdown voltage open-drain port Two CMOS output ports (of which one can be switched to be used as LCD driver outputs)

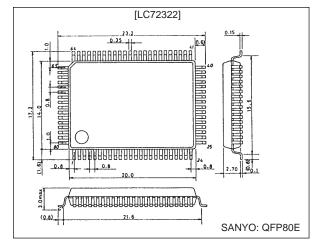
outputs)

Seven CMOS output ports (mask option switchable to use as LCD ports)

• I/O ports*: One switchable between input and output

in four-bit units and one switchable between input and output in one-bit units

Note: * Each port consists of four bits.

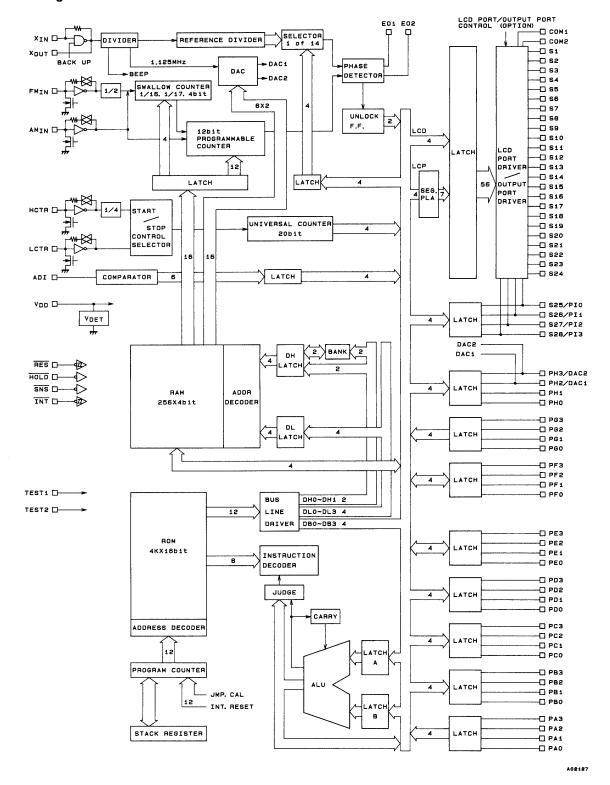

• Program runaway can be detected and a special address set (Programmable watchdog timer).

- Voltage detection type reset circuit
- One 6-bit A/D converter
- Two 8-bit D/A converters (PWM)
- One external interrupt
- Hold mode for RAM backup
- Sense FF for hot/cold startup determination
- PLL: 4.5 to 5.5 V
- CPU: 3.5 to 5.5 V
- RAM: 1.3 to 5.5 V

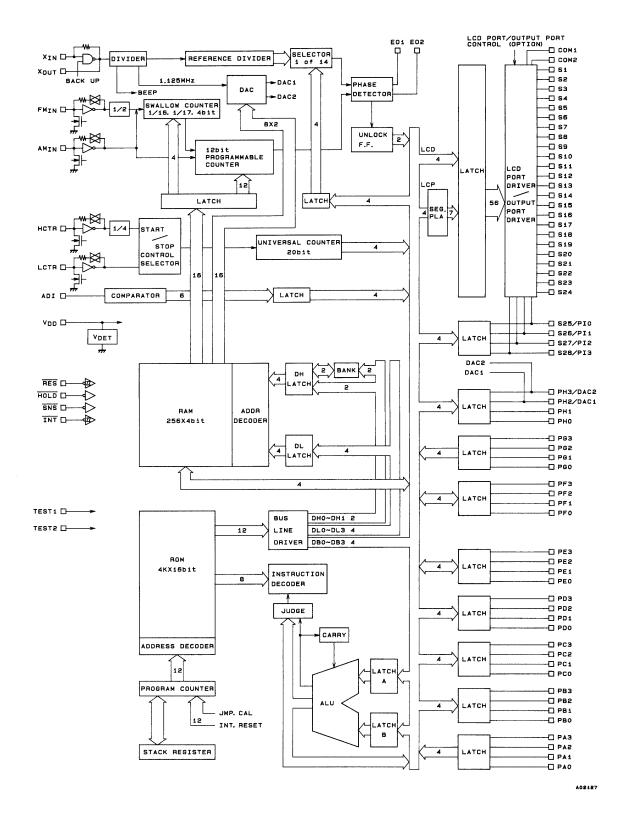
Package Dimensions

unit: mm

3174-QFP80E



This LSI can easily use CCB that is SANYO's original bus format.



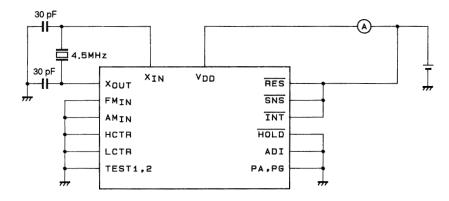
- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Pin Assignment

Block Diagram

Specifications Absolute Maximum Ratings at $Ta=25^{\circ}C,\,V_{SS}=0~V$

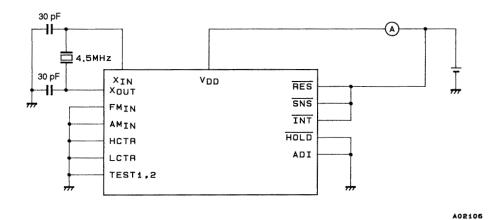
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max		-0.3 to +6.5	V
Input valtage	V _{IN} 1	HOLD, INT, RES, ADI, SNS, and the G port	-0.3 to +13	V
Input voltage	V _{IN} 2	Inputs other than V _{IN} 1	-0.3 to V _{DD} + 0.3	V
Output voltage	V _{OUT} 1	H port	-0.3 to +15	V
Output voltage	V _{OUT} 2	Outputs other than V _{OUT} 1	-0.3 to V _{DD} + 0.3	V
	I _{OUT} 1	All D and H port pins	0 to 5	mA
Output ourrent	I _{OUT} 2	All E and F port pins	0 to 3	mA
Output current	I _{OUT} 3	All B and C port pins	0 to 1	mA
	I _{OUT} 4	S1 to S28 and all I port pins	0 to 1	mA
Allowable power dissipation	Pd max	$Ta = -40 \text{ to } +85^{\circ}\text{C}$	300	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-45 to +125	°C


Allowable Operating Ranges at $Ta=-40\ to\ +85^{\circ}C,\ V_{DD}=3.5\ to\ 5.5\ V$

Parameter.	0	O and Wilson		Ratings		1.1-2
Parameter	Symbol	Conditions	min	typ	max	Unit
	V _{DD} 1	CPU and PLL operating	4.5		5.5	V
Supply voltage	V _{DD} 2	CPU operating	3.5		5.5	V
	V _{DD} 3	Memory retention voltage	1.3		5.5	V
	V _{IH} 1	G port	0.7 V _{DD}		8.0	V
	V _{IH} 2	RES, INT, HOLD	0.8 V _{DD}		8.0	V
	V _{IH} 3	SNS	2.5		8.0	V
Input high level voltage	V _{IH} 4	A port	0.6 V _{DD}		V _{DD}	V
	V _{IH} 5	E, F port	0.7 V _{DD}		V _{DD}	V
	V _{IH} 6	LCTR (period measurement), V _{DD} 1, PE1, PE3	0.8 V _{DD}		V _{DD}	V
	V _{IL} 1	G port	0		0.3 V _{DD}	V
	V _{IL} 2	RES, INT, PE1, PE3	0		0.2 V _{DD}	V
	V _{IL} 3	SNS	0		1.3	V
Input low level voltage	V _{IL} 4	A port	0		0.2 V _{DD}	V
	V _{IL} 5	PE0, PE2, F port	0		0.3 V _{DD}	V
	V _{IL} 6	LCTR (period measurement), V _{DD} 1	0		0.2 V _{DD}	V
	V _{IL} 7	HOLD	0		0.4 V _{DD}	V
	f _{IN} 1	XIN	4.0	4.5	5.0	MHz
	f _{IN} 2	FMIN, V _{IN} 2, V _{DD} 1	10		130	MHz
	f _{IN} 3	FMIN, V _{IN} 3, V _{DD} 1	10		150	MHz
Input fraguency	f _{IN} 4	AMIN (L), V _{IN} 4, V _{DD} 1	0.5		10	MHz
Input frequency	f _{IN} 5	AMIN (H), V _{IN} 5, V _{DD} 1	2.0		40	MHz
	f _{IN} 6	HCTR, V _{IN} 6, V _{DD} 1	0.4		12	MHz
	f _{IN} 7	LCTR (frequency), V _{IN} 7, V _{DD} 1	100		500	kHz
	f _{IN} 8	LCTR (frequency), V _{IH} 6, V _{IL} 6, V _{DD} 1	1		20 × 10 ³	Hz
	V _{IN} 1	XIN	0.50		1.5	Vrms
	V _{IN} 2	FMIN	0.10		1.5	Vrms
Input amplitude	V _{IN} 3	FMIN	0.15		1.5	Vrms
	V _{IN} 4, 5	AMIN	0.10		1.5	Vrms
	V _{IN} 6, 7	LCTR, HCTR	0.10		1.5	Vrms
Input voltage range	V _{IN} 8	ADI	0		V _{DD}	V

Electrical Characteristics for the Allowable Operating Ranges

Rejected pulse width	Conditions		Ratings		Unit	
ratameter	Cyrribor	Conditions	Onne			
Hysteresis	V _H	LCTR (period), RES, INT, PE1, PE3	0.1 V _{DD}			V
Rejected pulse width	P _{REJ}	SNS			50	μs
Power-down detection voltage	V _{DET}		2.7	3.0	3.3	V
steresis jected pulse width wer-down detection voltage ut high level current ut floating voltage I-down resistance tput high level off leakage current tput low level off leakage current tput high level voltage tput high level voltage tput middle level voltage	I _{IH} 1				3.0	μΑ
lanut high lovel ourrent	I _{IH} 2	A, E, and F ports: E and F ports with outputs off, A port with no R_{PD} , $V_I = V_{DD}$			3.0	μΑ
input nigh level current	I _{IH} 3	XIN: V _I = V _{DD} = 5.0 V	2.0	5.0	15	μΑ
	I _{IH} 4		4.0	10	30	μΑ
teresis ected pulse width ver-down detection voltage ut high level current ut floating voltage -down resistance put high level off leakage current put low level off leakage current put low level voltage put middle level voltage conversion error	I _{IH} 5	A port: With an R_{PD} , $V_I = V_{DD} = 5.0 \text{ V}$		50		μA
	l _{IL} 1				3.0	μΑ
Input low level current	I _{IL} 2	A, E, and F ports: E and F ports with outputs off, A port with no R _{PD} , V _I = V _{SS}			3.0	μA
	I _{IL} 3	XIN: V _{IN} = V _{SS}	2.0	5.0	15	μΑ
	I _{IL} 4	FMIN, AMIN, HCTR, LCTR: V _I = V _{SS}	4.0	10	30	μΑ
nput floating voltage	V _{IF}	A port: With an R _{PD}			0.05 V _{DD}	V
Pull-down resistance	R _{PD}	A port: With an R _{PD} , V _{DD} = 5.0 V	75	100	200	kΩ
	I _{OFFH} 1	-		0.01	10	nA
All Appendix	I _{OFFH} 2	B, C, D, E, F, and I ports: $V_O = V_{DD}$			3.0	μΑ
	I _{OFFH} 3	H port: V _O = 13 V			5.0	μΑ
Output low lovel off lookage current	I _{OFFL} 1	EO1, EO2: V _O = V _{SS}		0.01	10	nΑ
output low level on leakage current	I _{OFFL} 2	B, C, D, E, F, and I ports: $V_O = V_{SS}$			3.0	μΑ
Rejected pulse width Power-down detection voltage Input high level current Input low level current Input floating voltage Pull-down resistance Output high level off leakage current Output low level off leakage current Output high level voltage Output high level voltage	V _{OH} 1	B and C ports: I _O = 1 mA	V _{DD} – 2.0	V _{DD} – 1.0	V _{DD} – 0.5	V
	V _{OH} 2	E and F ports: I _O = 1 mA	V _{DD} – 1.0			V
	V _{OH} 3	EO1, EO2: I _O = 500 μA	V _{DD} – 1.0			V
		XOUT: I _O = 200 μA	V _{DD} – 1.0			V
	V _{OH} 5	S1 to S28 and the I port: $I_O = -0.1 \text{ mA}$	V _{DD} – 1.0			V
	V _{OH} 6	D port: I _O = 5 mA	V _{DD} – 1.0			V
	V _{OH} 7	COM1, COM2: I _O = 25 μA	V _{DD} – 0.75	V _{DD} – 0.5	V _{DD} – 0.3	V
	V _{OL} 1	B and C ports: I _O = 50 μA	0.5	1.0	2.0	V
	V _{OL} 2	E and F ports: I _O = 1 mA			1.0	V
nput floating voltage Pull-down resistance Dutput high level off leakage current Dutput low level off leakage current Dutput high level voltage Dutput high level voltage					-	V
Output low level voltage		* '				V
ejected pulse width ower-down detection voltage uput high level current uput floating voltage ull-down resistance utput high level off leakage current utput low level off leakage current utput high level voltage utput high level voltage		S1 to S28 and the I port: I _O = 0.1 mA				V
		· · ·				V
All Appendix		•		0.5		V
						V
	V _M 1	COM1, COM2: V _{DD} = 5.0 V, I _O = 25 μA		2.5		V
A/D conversion error		==	-1/2			LSB
	I _{DD} 1			15	20	mA
	I _{DD} 2	(HOLD mode, Figure 1)		1.5		mA
	I _{DD} 3	V _{DD} 1, PLL stopped, CT = 13.33 μs (HOLD mode, Figure 1)		1.0		mA
Current drain	I _{DD} 4	V _{DD} 1, PLL stopped, CT = 40.00 μs (HOLD mode, Figure 1)		0.7		mA
	I _{DD} 5	V _{DD} = 5.5 V, oscillator stopped, Ta = 25°C (BACK UP mode, Figure 2)			5	μΑ
Rejected pulse width Power-down detection voltage Input high level current Input floating voltage Pull-down resistance Output high level off leakage current Output low level off leakage current Output high level voltage Output high level voltage Output ow level voltage	1003	V _{DD} = 2.5 V, oscillator stopped, Ta = 25°C (BACK UP mode, Figure 2)			1	μA
		•				


Test Circuits

A02105

Note: PB to PF, PH, and PI are all open. However, PE and PF are output selected.

Figure 1 I_{DD} 2 to I_{DD} 4 in HOLD Mode

Note: PA to PI, S1 to S4, COM1, and COM2 are all open.

Figure 2 I_{DD}5 in BACK UP Mode

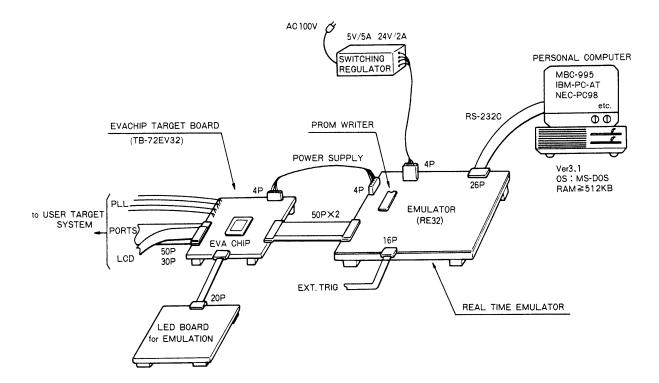
Pin Functions

Pin	Pin No.	Functions	I/O	I/O circuit type
PA0 PA1 PA2 PA3	35 34 33 32	Low-threshold type dedicated input port These pins can be used, for example, for key data acquisition. Built-in pull-down resistors can be specified as an option. This option is in 4-pin units, and cannot be specified for individual pins. Input through these pins is disabled in BACK UP mode.	Input	BACK UP A02107 Option
PB0 PB1 PB2 PB3 PC0 PC1 PC2 PC3 PD0 PD1 PD2 PD3	30 29 28 27 26 25 24 23 22 21 20 19	Dedicated output ports Since the output transistor impedances are unbalanced CMOS, these pins can be effectively used for functions such as key scan timing. These pins go to the output high- impedance state in BACK UP mode. These pins go to the low level during a reset, i.e., when the RES pin is low. Dedicated output ports These are normal CMOS outputs. These pins go to the output high-impedance state in BACK UP mode. These pins go to the low level during a reset, i.e., when the RES pin is low.	Output	BACK UP A02108
PE0 PE1 PE2 PE3 PF0 PF1 PF2 PF3	18 17 16 15 14 13 12 11	I/O port These pins are switched between input and output as follows: Once an input instruction (IN, TPT, or TPF) is executed, these pins latch in the input mode. Once an output instruction (OUT, SPB, or RPB) is executed, they latch in the output mode. These pins go to the input mode during a reset, i.e., when the RES pin is low. In BACK UP mode these pins go to the input mode with input disabled. I/O port These pins are switched between input and output by the FPC instruction. The I/O states of this port can be specified for individual pins. These pins go to the input mode during a reset, i.e., when the RES pin is low. In BACK UP mode these pins go to the input mode with input	I/O	PE1, PE3 BACK UP A02108 Others A02110
PG0 PG1 PG2 PG3	6 5 4 3	Dedicated input port Input through these pins is disabled in BACK UP mode.	Input	BACK UP A02111

Continued from preceding page.

Pin	Pin No.	Functions	I/O	I/O circuit type
PH0 PH1 PH2/DAC1 PH3/DAC2	10 9 8 7	Dedicated output port Since these pins are high-breakdown voltage n-channel transistor open-drain outputs, they can be effectively used for functions such as band power supply switching. Note that PH2 and PH3 also function as the DAC1 and DAC2 outputs. These ports go to the high impedance state during a reset, i.e., when the RES pin is low, and in BACK UP mode.	Output	BACK UP A02112
PI0/S25 PI1/S26 PI2/S27 PI3/S28	39 38 37 36	Dedicated output port While these pins have a CMOS output circuit structure, they can be switched to function as LCD drivers. Their function is switched by the SS and RS instructions. These pins cannot be switched individually. The LCD driver function is selected and a segment-off signal is output when power is first applied or when RES is low. These pins are held at the low level in BACK UP mode. Note that when the general-purpose port use option is specified, these pins output the contents of IPORT when LPC is 1, and the contents of the general-purpose output port LATCH when LPC is 0.	Output	LCD output I port LPC BACK UP A02113
S1 to S24	63 to 40	LCD driver segment outputs A frame frequency of 100 Hz and a 1/2 duty, 1/2 bias drive type are used. A segment-off signal is output when power is first applied or when RES is low. These pins are held at the low level in BACK UP mode. The use of these pins as general-purpose output ports can be specified as an option.	Output	BACK UP
COM1 COM2	65 64	LCD driver common outputs A 1/2 duty, 1/2 bias drive type is used. The output when power is first applied or when RES is low is identical to the normal operating mode output. These pins are held at the low level in BACK UP mode.	Output	BACK UP A02115
FMIN	74	FM VCO (local oscillator) input The input must be capacitor coupled. The input frequency range is from 10 to 130 MHz.		!
AMIN	75	AM VCO (local oscillator) input The band supported by this pin can be selected using the PLL instruction. High (2 to 40 MHz) \rightarrow SW Low (0.5 to 10 MHz) \rightarrow LW and MW	Input	HOLD or PLL STOP instruction

Continued from preceding page.


Pin	Pin No.	Functions	I/O	I/O circuit type
	140.	Universal counter input		" o chount typo
		The input should be capacitor coupled.		
HCTR	70	The input frequency range is from 0.4 to 12 MHz.		
		This input can be effectively used for FM IF or AM IF counting.		į
		Universal counter input	Input	
		The input should be capacitor coupled for input frequencies in	input	HOLD or PLL STOP
LCTR	71	the range 100 to 150 kHz. Capacitor coupling is not required for input frequencies from		instruction
Lonk	, ,	1 to 20 Hz.		A02116
		This input can be effectively used for AM IF counting.		
		This pin can also be used as a normal input port.		
				!
				, , , , , , , , , , , , , , , , , , ,
		A/D converter input		
ADI	69	A 1.28 ms period is required for a 6-bit sequential comparison	Input	ref
		conversion. The full scale input is ((63/96) · V _{DD}) for a data value of 3FH.		HOLD or PLL STOP
				instruction
				A02117
		External interrupt request input		
INT	66	An interrupt is generated when the INTEN flag is set (by an	Input	<u></u>
		SS instruction) and a falling edge is input. This pin can also be used as a normal input port.		
		This pin can also be used as a normal input port.		A02118
				5_
		Reference frequency and programmable divider phase		
E01	77	comparison error outputs Charge pump circuits are built in.	Output	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
EO2	78	EO1 and EO2 are the same.		
		Lot and Loz are the same.		A02119
				!
		Input pin used to determine if a power outage has occurred in		
SNS	72	BACK UP mode	Input	├
		This pin can also be used as a normal input port.		i A02120
		Input hin used to force the LC72222 to HOLD mode		
		Input pin used to force the LC72322 to HOLD mode The LC72322 goes to HOLD mode when the HOLDEN flag is		
HOLD	67	set (by an SS instruction) and the HOLD input goes low.	Input	
		A high-breakdown voltage circuit is used so that this input can		
		be used in conjunction with the normal power switch.		A02120
		System reset input		
		This signal should be held low for 75 ms after power is first		
RES	68	applied to effect a power-up reset.	Input	<u> </u>
		The reset starts when a low level has been input for at least		
		six reference clock cycles.		A02118
				·
		Crystal oscillator connections		V
XIN	1	(4.5 MHz)	Input	×IN P
XOUT	80	A feedback resistor is built in.	Output	×оит ф
				A02121
				. AU2121
TEST1	2 79	LSI test pins. These pins must be connected to $\ensuremath{V_{\text{SS}}}$.	–	_
TEST2				
V _{DD}	31, 73	Power supply	_	_
V _{SS}	76			

Mask Options

No.	Description	Selections						
1	WDT (watchdog timer) inclusion selection	WDT included						
'	(watchdog timer) inclusion selection	No WDT						
2	Port A pull-down resistor inclusion selection	Pull-down resistors included						
	Fort A pull-down resistor inclusion selection	No pull-down resistors						
		2.67 µs						
3	Cycle time selection	13.33 µs						
		40.00 μs						
4	LCD port/general-purpose port selection	LCD ports						
	LCD politigeneral-purpose port selection	General-purpose output ports						

Development Environment

- The LC72P321 is used for OTP.
- The LC72EV321 is used as the evaluation chip.
- A total debugging system is available in which the TB-72EV32 evaluation chip board and the RE32 multi-function emulator are controlled by a personal computer.

LC72321 Instruction Table

Abbreviations:

ADDR: Program memory address [12 bits]

b: Borrow

B: Bank number [2 bits]

C: Carry

DH: Data memory address high (row address) [2 bits]DL: Data memory address low (column address) [4 bits]

I: Immediate data [4 bits]M: Data memory addressN: Bit position [4 bits]Pn: Port number [4 bits]

r: General register (one of the locations 00 to 0FH in bank 0)

(): Contents of register or memory

()N: Contents of bit N of register or memory

ction		Ope	rand								M	achine	code	
Instruction Group	Mnemonic	1st	2nd	Function	Operation	D15	14	13	12	11	10	9 8	7 6 5 4	3 2 1 D0
	AD	r	М	Add M to r	$r \leftarrow (r) + (M)$	0	1	0	0	0	0	DH	DL	Rn
	ADS	r	М	Add M to r, then skip if carry	$r \leftarrow (r) + (M)$ skip if carry	0	1	0	0	0	1	DH	DL	Rn
ons	AC	r	М	Add M to r with carry	$r \leftarrow (r) + (M) + C$	0	1	0	0	1	0	DH	DL	Rn
Addition instructions	ACS	r	М	Add M to r with carry, then skip if carry	$r \leftarrow (r) + (M) + C$ skip if carry	0	1	0	1	0	0	DH	DL	Rn
-i=	Al	М	1	Add I to M	$M \leftarrow (M) + I$	0	1	0	1	0	0	DH	DL	l l
Additi	AIS	М	ı	Add I to M, then skip if carry	M ← (M) + I skip if carry	0	1	0	1	0	1	DH	DL	I
	AIC	М	-	Add I to M with carry	$M \leftarrow (M) + I + C$	0	1	0	1	1	0	DH	DL	I
	AICS	М	I	Add I to M with carry, then skip if carry	$M \leftarrow (M) + I + C$ skip if carry	0	1	0	1	1	1	DH	DL	I
	SU	r	М	Subtract M from r	$r \leftarrow (r) - (M)$	0	1	1	0	0	0	DH	DL	Rn
	SUS	r	М	Subtract M from r, then skip if borrow	$r \leftarrow (r) - (M)$ skip if borrow	0	1	1	0	0	1	DH	DL	Rn
્રા	SB	r	М	Subtract M from r with borrow	$r \leftarrow (r) - (M) - b$	0	1	1	0	1	0	DH	DL	Rn
Subtraction instructions	SBS	r	М	Subtract M from r with borrow, then skip if borrow	$\begin{aligned} r \leftarrow (r) - (M) - b \\ \text{skip if borrow} \end{aligned}$	0	0 1 1 0				0	DH	DL	Rn
tion	SI	М	ı	Subtract I from M	$M \leftarrow (M) - I$	0	1	1	1	0	0	DH	DL	ı
ubtraci	SIS	М	ı	Subtract I from M, then skip if borrow	$M \leftarrow (M) - I$ skip if borrow		1	1	1	0	1	DH	DL	I
00	SIB	М	I	Subtract I from M with borrow	$M \leftarrow (M) - I - b$	0	1	1	1	1	0	DH	DL	I
	SIBS	М	_	Subtract I from M with borrow, then skip if borrow	$M \leftarrow (M) - I - b$ skip if borrow	0	1	0	1	1	1	DH	DL	I
Suc	SEQ	r	М	Skip if r equals M	r – M skip if zero	0	0	0	0	0	1	DH	DL	Rn
Comparison instructions	SGE	r	М	Skip if r is greater than or equal to M	r - M skip if not borrow $(r) \ge (M)$	0 0 0 0 1 1		1	DH	DL	Rn			
parison	SEQI	М	ı	Skip if M equal to I	M – I skip if zero	0	0 0 1 1 0 1 DH				1	DL	I	
Com	SGEI	М	I	Skip if M is greater than or equal to I	M - I skip if not borrow $(M) \ge I$	0 0 1 1 1				1	1	DH	DL	I

Continued from preceding page.

Instruction Group		Ope	rand								M	lachine	code						
Instruct	Mnemonic	1st	2nd	Function	Operation	D15	14	13	12	11	10	9 8	7 6 5 4	3 2 1 D0					
ation	AND	М	ı	AND I with M	$M \leftarrow (M) \land I$	0	0	1	1	0	0	DH	DL	I					
Logical operation instructions	OR	М	ı	OR I with M	$M \leftarrow (M) \vee I$	0	0	1	1	1	0	DH	DL	I					
Logica	EXL	r	М	Exclusive OR M with r	$r \leftarrow (r) \oplus (M)$	0	0	1	0	0	0	DH	DL	Rn					
	LD	r	М	Load M to r	$r \leftarrow (M)$	1	0	0	0	0	0	DH	DL	Rn					
	ST	М	r	Store r to M	$M \leftarrow (r)$	1	0	0	0	0	1	DH	DL	Rn					
ctions	MVRD	r	М	Move M to destination M referring to r in the same row	$[DH, Rn] \leftarrow (M)$	1	0	0	0	1	0	DH	DL	Rn					
Transfer instructions	MVRS	М	r	Move source M referring to r to M in the same row	M ← [DH, Rn]	1	0	0	0	1	1	DH	DL	Rn					
Trans	MVSR	M1	M2	Move M to M in the same row	[DH, DL1] ← [DH, DL2]	1	0	0	1	0	0	DH	DL1	DL2					
	MVI	М	ı	Move I to M	M ← I	1	0	0	1	0	1	DH	DL	I					
	PLL	М	r	Load M to PLL registers	PLL r ← PLL DATA	1	0	0	1	1	0	DH	DL	Rn					
tions	ТМТ	М	N	Test M bits, then skip if all bits specified are true	if M (N) = all 1, then skip	1	0	1	0	0	1	DH	DL	N					
Bit test instructions	TMF	М	N	Test M bits, then skip if all bits specified are false	if M (N) = all 0, then skip	1	0	1	0	1 1 DH			DL	N					
call	JMP	AD	DR	Jump to the address	PC ← ADDR	1	0	1	1				ADDR (12 bits)						
broutine	CAL	AD	DR	Call subroutine	Stack ← (PC) + 1	1	1	0	0			A	ADDR (12 bits)						
Jump and subroutine call instructions	RT			Return from subroutine	PC ← Stack	1	1	0	1	0	1	0 0	0 0 0 0	0 0 0 0					
Jump instru	RTI			Return from interrupt	PC ← Stack	1	1	0	1	0	1	0 1	0 0 0 0	0 0 0 0					
st tions	TTM	N		Test timer F/F then skip if it has not been set	if timer F/F = 0, then skip	1	1	0	1	0	1	1 0	0 0 0 0	N					
F/F test instructions	TUL	N		Test unlock F/F then skip if it has not been set	if UL F/F = 0, then skip	1	1	0	1	0	1	1 1	0 0 0 0	N					
tions	SS	N		Set status register	(Status register 1) N ← 1	1	1	0	1	1	1	0 0	0 0 0 0	N					
rinstruc	RS	N		Reset status register	(Status register 1) N ← 0	1	1	0	1	1	1	0 1	0 0 0 0	N					
Status register instructions	TST	N		Test status register true	if (Status register 2) N = all 1, then skip	1	1	0	1	1	1	1 0	0 0 0 0	N					
	TSF	N		Test status register false	if (Status register 2) N = all 0, then skip	1	1	0	1	1	1	1 1	0 0 0 0	N					
Bank switching instructions	BANK	В		Select bank	BANK ← B	1	1	0	1	0	0	В	0 0 0 0	0 0 0 0					

Continued from preceding page.

ction		Ope	rand								M	achi	ne	cod	e					
Instruction Group	Mnemonic	1st	2nd	Function	Operation		14	13	12	11	10	9	8	7	6	5	4	3 2	2 1	D0
	LCD	М	ı	Output segment pattern to LCD digit direct	LCD (DIGIT) ← M	1	1	1	0	0	0	Dł	+		DI	-		[DIGIT	
	LCP	М	ı	Output segment pattern to LCD digit through PLA	$LCD\ (DIGIT) \leftarrow PLA \leftarrow M$	1	1	1	0	0	1	Dł	+		DI	-		[DIGI"	г
	IN	М	Р	Input port data to M	$M \leftarrow (Port (P))$	1	1	1	0	1	0	Dŀ	1		DI	_			Р	\neg
ions	OUT	М	Р	Output contents of M to port	$(Port (P)) \leftarrow M$	1	1	1	0	1	1	Dŀ	1		DI	_			Р	\neg
iruci	SPB	Р	N	Set port bits	(Port (P)) N ← 1	1	1	1	1	0	0	0	0	Р			Ν			
//O instructions	RPB	Р	N	Reset port bits	(Port (P)) N ← 0	1	1	1	1	0	1	0	1	Р			Ν	\neg		
O/I	TPT	Р	N	Test port bits, then skip if all bits specified are true	if (Port (P)) N = all 1, then skip	1	1	1	1	1	0	1	0	Р				N		
	TPF	Р	N	Test port bits, then skip if all bits specified are false	if (Port (P)) N = all 0, then skip	1	1	1	1	1	1	1	1		Р				N	
Universal counter instructions	UCS	-		Set I to UCCW1	UCCW1 ← I	0	0	0	0	0	0	0	1	0	0	0	0		ı	
Universal co	UCC	I		Set I to UCCW2	UCCW2 ← I	0	0	0	0	0	0	1	1	0	0	0	0		ı	
SL	FPC	N		F port I/O control	FPC latch ← N	0	0	0	1	0	0	0	0	0	0	0	0		Ν	
Other instructions	CKSTP			Clock stop	Stop clock if HOLD = 0	0	0	0	1	0	0	0	1	0	0	0	0	0 (0 0	0
Other	DAC	I		Load M to D/A registers	DAreg ← DAC DATA	0	0	0	0	0	0	1	0	0	0	0	0		1	
0 .≅	NOP			No operation		0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 1997. Specifications and information herein are subject to change without notice.