

LS7266R1 Registers:

LS7266R1 has a set of registers associated with each X and Y axis. All X-axis registers have the name prefix X, whereas all Y-axis registers have the prefix Y. Selection of a specific register for Read/Write is made from the decode of the three most significant bits (D7 - D5) of the data-bus. CS input enables the IC for Read/Write. C/D input selects between control and data information for Read/Write. Following is a complete list of LS7266R1 registers.

Preset Registers: XPR and YPR

Each of these PRs are 24-bit wide. 24-bit data can be written into a PR, one byte at a time, in a sequence of three data write cycles.

 PR

 7
 0
 7
 0
 7
 0

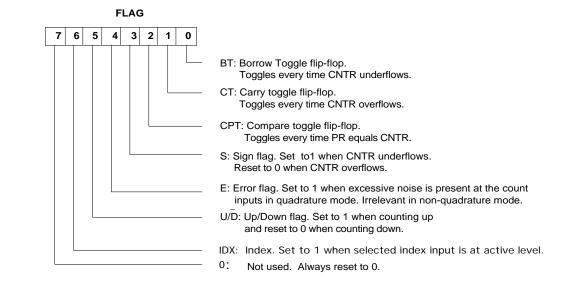
 HI BYTE (PR2)
 MID BYTE (PR1)
 LO BYTE (PR0)

Counters: XCNTR and YCNTR

Each of these CNTRs are 24-bit synchronous Up/Down counters. The count clocks for each CNTR is derived from its associated A/B inputs. Each CNTR can be loaded with the content of its associated PR.

Output Latches: XOL and YOL

Each OL is 24-bits wide. In effect, the OLs are the output ports for the CNTRs. Data from each CNTR can be loaded into its associated OL and then read back on the data-bus, one byte at a time, in a sequence of three data Read cycles.

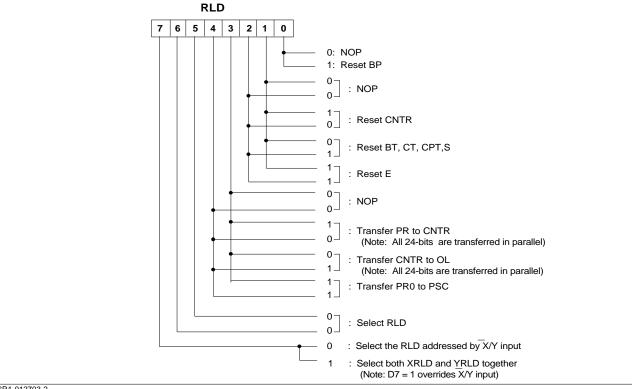

Byte Pointers: XBP and YBP

The Read and Write operations on an OL or a PR always accesses one byte at a time. The byte that is accessed is addressed by one of the BPs. At the end of every data Read or Write cycle on an OL or a PR, the associated BP is automatically incremented to address the next byte.

7266R1-102904-1

Flag Register: XFLAG and YFLAG

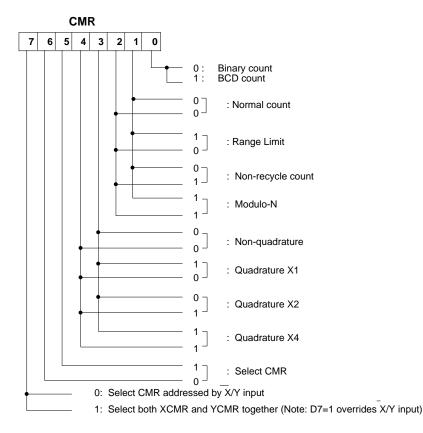
The FLAG registers hold the status information of the CNTRs and can be read out on the data bus. The E bit of a FLAG register is set to 1 when the noise pulses at the quadrature inputs are wide enough to be validated by the input filter circuits. E = 1 indicates excessive noise at the inputs but not a definite count error. Once set, E can only be reset via the RLD.


Filter Clock Prescalers: XPSC and YPSC

Each PSC is an 8-bit programmable modulo-N down counter, driven by the FCK clock. The factor N is down loaded into a PSC from the associated PR low byte register PR0. The PSCs provide the ability to generate independent filter clock frequencies for each channel. The PSCs generate the internal filter clock, FCKn used to validate inputs XA, XB, YA, YB in the quadrature mode.

Final filter clock frequency $f_{FCKn} = (f_{FCK}/(n+1))$, where n = PSC = 0 to FFH. For proper counting in the quadrature mode, $f_{FCKn} = 8f_{QA}$ (or $8f_{QB}$), where f_{QA} and f_{QB} are the clock frequencies at inputs A and B. In non-quadrature mode filter clock is not needed and the FCK input (Pin 2), should be tied to VDD.

Reset and Load Signal Decoders: XRLD and YRLD

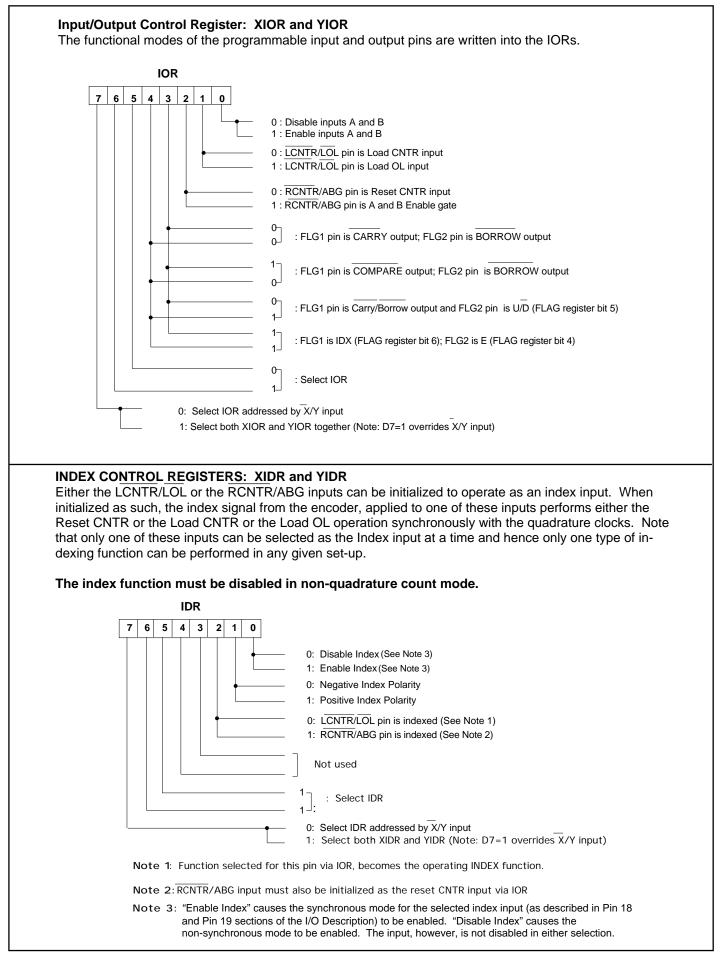

Following functions can be performed by writing a control byte into an RLD: Transfer PR to CNTR, Transfer CNTR to OL, reset CNTR, reset FLAG and reset BP.

Counter Mode Registers: XCMR and YCMR

The CNTR operational mode is programmed by writing into the CMRs.

DEFINITIONS OF COUNT MODES:

Range Limit. In range limit count mode, an upper and a lower limit is set, mimicking limit switches in the mechanical counterpart. The upper limit is set by the content of the PR and the lower limit is set to be 0. The CNTR freezes at CNTR = PR when counting up and at CNTR = 0 when counting down. At either of these limits, the counting is resumed only when the count direction is reversed.


Non-Recycle. In non-recycle count mode, the CNTR is disabled, whenever a count overflow or underflow takes place. The end of cycle is marked by the generation of a Carry (in Up Count) or a Borrow (in Down Count). The CNTR is re-enabled when a reset or load operation is performed on the CNTR.

Modulo-N. In modulo-N count mode, a count boundary is set between 0 and the content of PR. When counting up, at CNTR = PR, the CNTR is reset to 0 and the up count is continued from that point. When counting down, at CNTR = 0, the CNTR is loaded with the content of PR and down count is continued from that point.

The modulo-N is true bidirectional in that the divide-by-N output frequency is generated in both up and down direction of counting for same N and does not require the complement of N in the UP instance. In frequency divider application, the modulo-N output frequency can be obtained at either the Compare (FLG1) or the Borrow (FLG2) output. Modulo-N output frequency, $f_N = (f_i / (N+1))$ where $f_i =$ Input count frequency and N = PR.

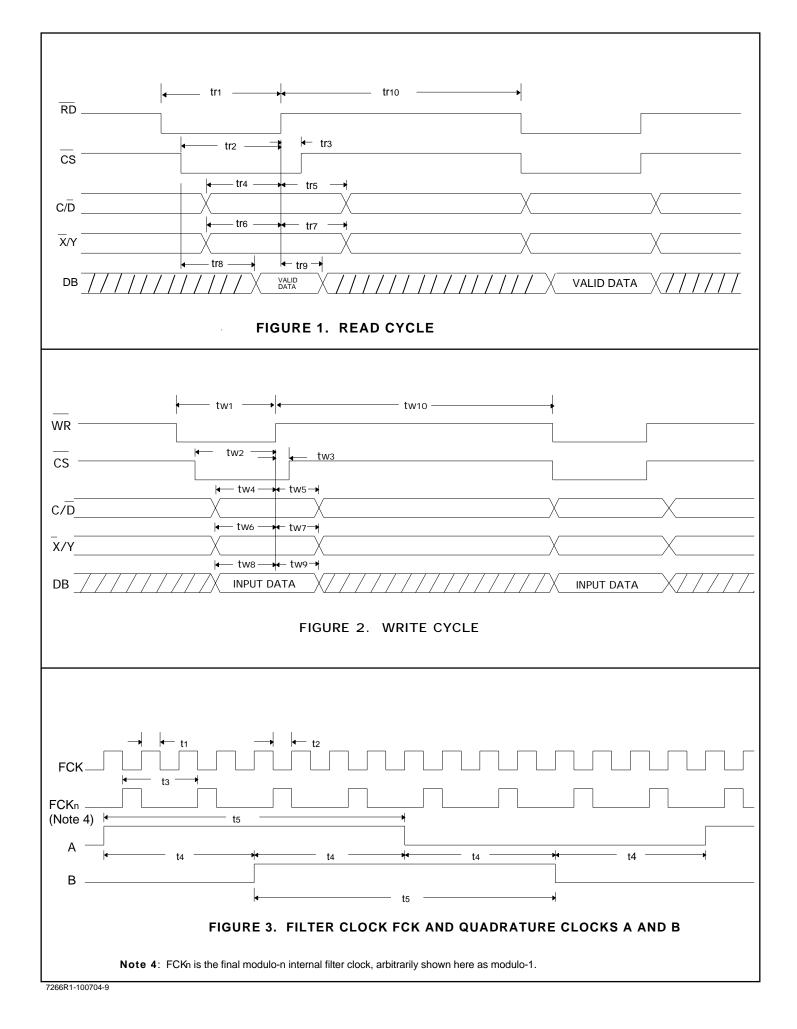
> The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

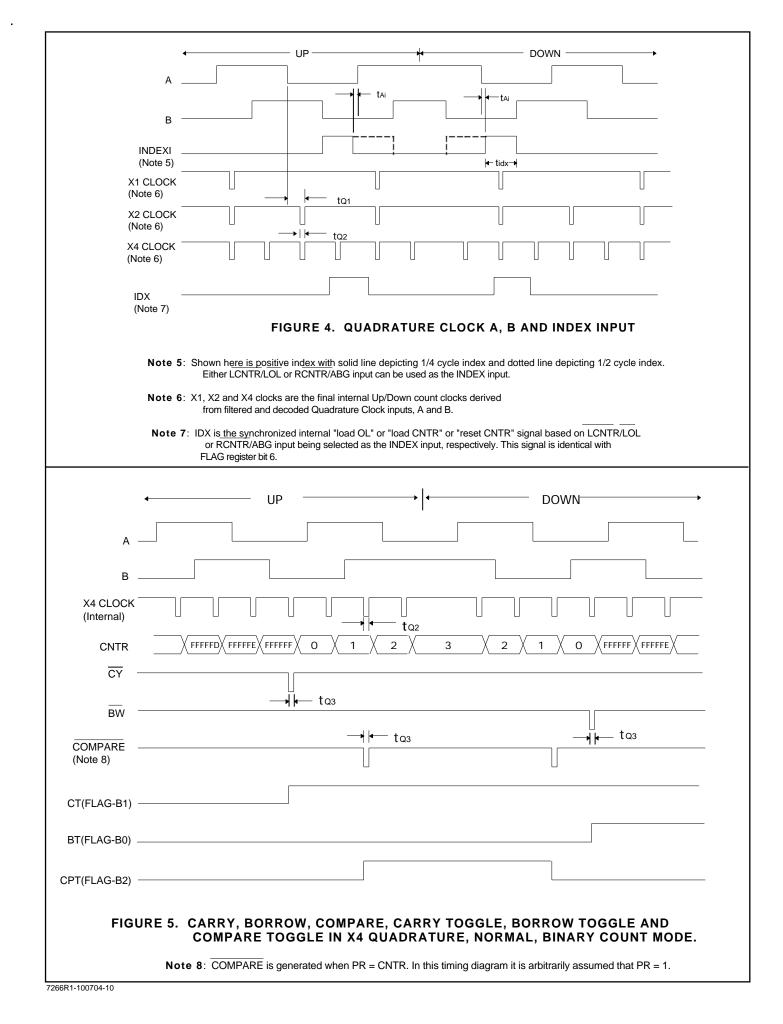
7266R1-012703-3

7266R1-012703-4

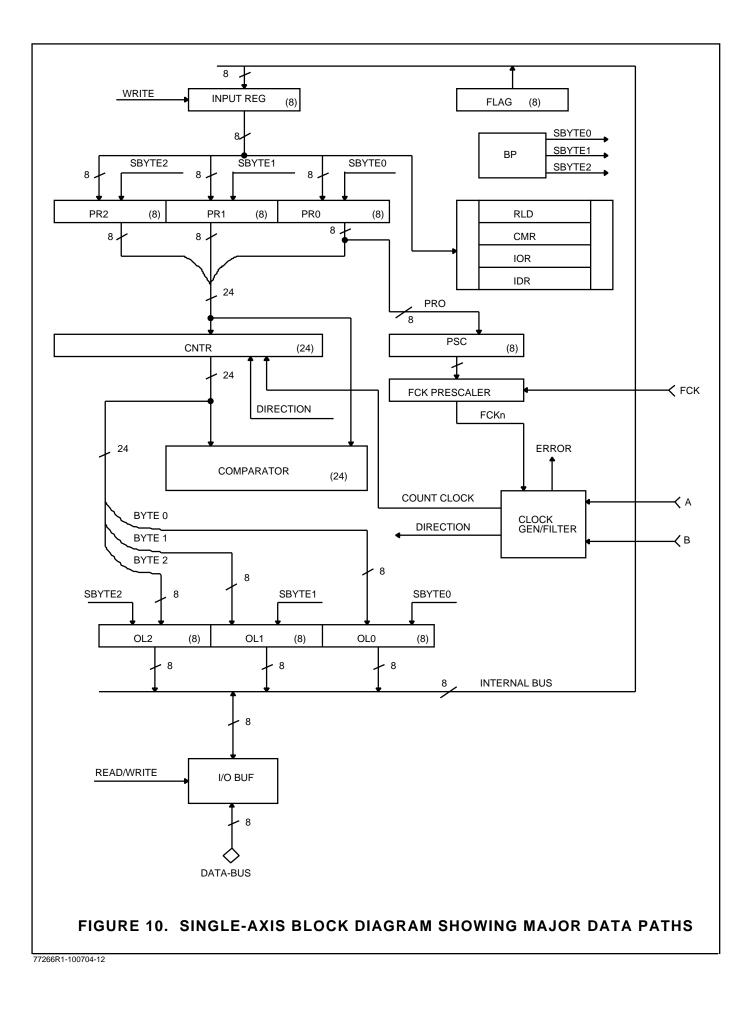
REGISTER ADDRESSING MODES												
	D7	D6	D5	C/D	RD	WR	X/Y	CS	FUNCTION			
	х	х	Х	Х	х	х	Х	1	Disable both axes	for Read/Wri	te	
	Х	x	х	0	1		0	0	Write to XPR byte segment ad		Iressed by XBP (Note 3)	
	х	Х	Х	0	1		1	0	Write to YPR byte segment addressed by YBP (Note 3)			
	0	0	0	1	1		0	0	Write to XRLD			
	0	0	0	1	1		1	0	Write to YRLD			
	1	0	0	1	1		Х	0	Write to both XRLE	and YRLD		
	0	0	1	1	1		0	0	Write to XCMR			
	0	0	1	1	1		1	0	Write to YCMR			
	1	0	1	1	1		Х	0	Write to both XCMF	R and YCMR		
	0	1	0	1	1		0	0	Write to XIOR			
	0	1	0	1	1		1	0	Write to YIOR			
	1	1	0	1	1		Х	0	Write to both XIOR	and YIOR		
	0	1	1	1	1		0	0	Write to XIDR			
	0	1	1	1	1		1	0	Write to YIDR			
	1	1	1	1	1		Х	0	Write to both XIDR	and YIDR		
	Х	х	х	0	0	1	0	0	Read XOL byte see	ssed by XBP (Note 3)		
	Х	х	х	0	0	1	1	0	Read YOL byte segment addressed by YBP (Note 3)			
	х	х	х	1	0	1	0	0	Read XFLAG			
	х	х	х	1	0	1	1	0	Read YFLAG			
X = Don't Care												
	No	ote 3:	Releva	nt BP is	autom	atically	incremer	nted a	t the trailing edge of	RD or WR p	ulse	
Absolu	to Max	vimun	n Pati	nae.								
	amete		ii itati	-	ymbo	bl			Values		Unit	
Supply Voltage				Vdd				+7.0		V		
Voltage at any input				Vin				Vss - 0.3 to V		V		
Operating Temperature				ТА				-25 to +8	80	oC		
Storage Temperature				TSTG				-65 to +150		oC		
DC Elec	trical	Chara	acteri	stics.	(TA =	-25°C	to +80	°C, ∖	/DD = 3V to 5.5V)			
Para	meter	•		Sy	mbol	Γ	Min. Va	lue	Max.Value	Unit	Remarks	
Supply Voltage		-	Vdd	D)	5.5	V	-			
Supply Current				IDD		-		800	μA	All clocks off		
Input Logic Low				VIL Vili				0.15Vdd	V	-		
Input Logic High							D	-	V V	-		
Output Low Voltage				Vol Voн			05	0.5	V V	OSNK = 5mA, $VDD = 5VOSRC = 1mA$, $VDD = 5V$		
Output High Voltage Input Leakage Current				Voh Vdd - 0 Iilk -			0.0	- 30	v nA	-		
Data Bu				t	IDLK		-		60	nA	Data bus off	
				-	IOSRC	;	1.0)	-	mA	VO = VDD - 0.5V, VDD = 5V	
Output Source Current Output Sink Current				IOSNK		5.0		-	mA	VO = 0.5V, VDD = 5V		
•												

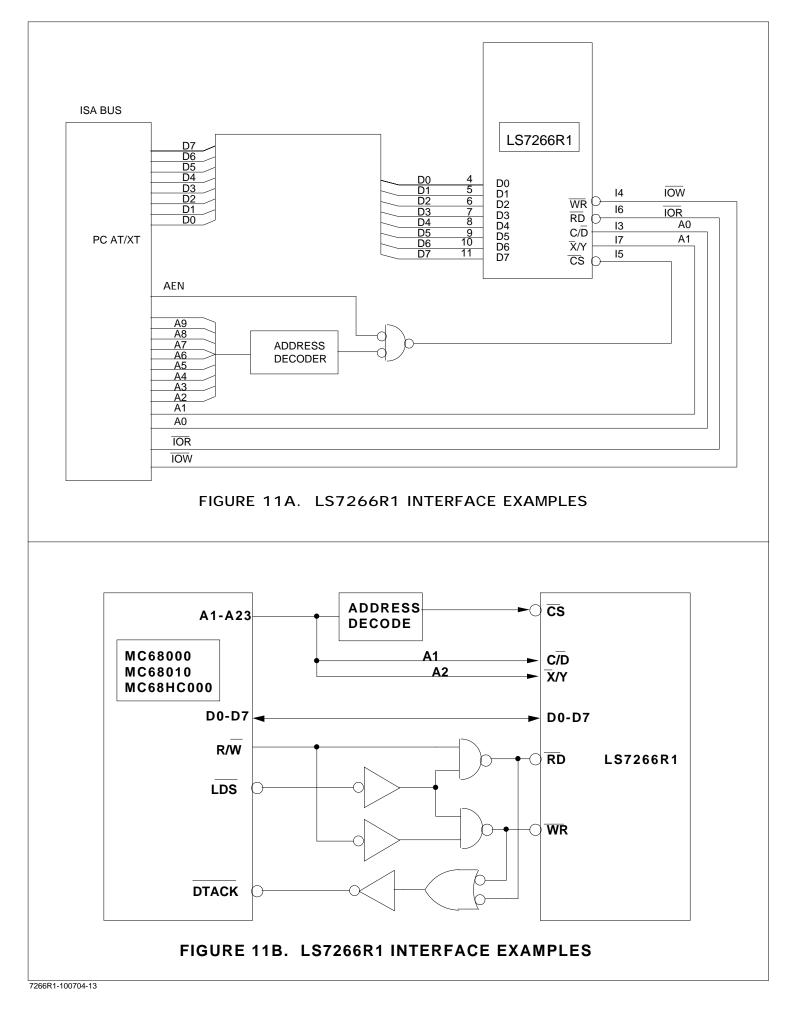
Transient Characteristics. (TA:	= -25°C t	o +80°C)				
Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks	
For V _{DD} = 3V to 5.5V:	,					
Read Cycle (See Fig. 1)						
RD Pulse Width	tr1	80	-	ns	-	
CS Set-up Time	tr2	80	-	ns	-	
CS Hold Time	tr3	0	-	ns	-	
C/D Set-up Time	tr4	80	-	ns	-	
C/D Hold Time	tr5	10	-	ns	-	
X/Y Set-up Time	tr6	80	-	ns	-	
X/Y Hold Time	tr7	10	-	ns	<u>-</u>	
Data Bus Access Time	tr8	80	_	ns	Access starts when both \overline{RD}	
Data Dus Access Time	uo	00		115	and CS are low.	
Data Bus Release Time	tr9	-	35	ns	Release starts when either \overline{RD} or \overline{CS} is terminated.	
Back to Back Read delay	t r10	90	-	ns	-	
,						
Write Cycle (See Fig. 2)						
WR Pulse Width	tw1	45	-	ns	-	
CS Set-up Time	tw2	45	-	ns	-	
CS Hold Time	twз	0	-	ns	-	
C/D Set-up Time	tw4	45	-	ns	-	
C/D Hold Time	tw5	10	-	ns	-	
X/Y Set-up Time	tw6	45	-	ns	-	
X/Y Hold Time	tw7	10	-	ns	-	
Data Bus Set-up Time	tws	45	-	ns	<u>-</u>	
Data Bus Hold Time	two	10	_	ns	_	
Back to Back Write Delay	t W10	90	_	ns	_	
Dack to Back White Delay		50		115		
Load CNTR, Reset CNTR and						
Load OL Pulse Width	t11	35	_	ns	_	
Edad OE I dise Width	LI I	55	-	113	_	
For $V_{DD} = 3.3V \pm 10\%$:						
Quadrature Mode (See Fig. 3-5)						
FCK High Pulse Width	t1	28		ns		
FCK Low Pulse Width	t2	28	-	ns		
FCK Frequency	ffck	-	- 17	MHz		
			17		$t_3 = (n+1) (t_1+t_2),$	
Mod-n Filter Clock(FCKn)Period	t3	56	-	ns	where $n = PSC = 0$ to FFH	
FCKn frequency	f FCKn	-	17	MHz	-	
Quadrature Separation	t4	115	-	ns	t4 2t3	
Quadrature Clock Pulse Width	t5	230	-	ns	t5 4t3	
Quadrature Clock frequency	fqa, fq	в -	2.2	MHz	$f_{QA} = f_{QB} = 1/8t_3$	
Quadrature Clock to Count Delay	tQ1	5t 3	6t 3	-	-	
x1/x2/x4 Count Clock Pulse Width	n tq2	56	-	ns	tq2 = t3	
Index Input Pulse Width	tidx	170	-	ns	tidx 3t3	
Index Skew from A	t Ai	-	56	ns	tAi t3	
Carry/Borrow/Compare Output Width	tqз	56	-	ns	tq3 = t3	
Non-Quadrature Mode (See Fig. 6-7)						
Clock A - High Pulse Width	t6	30	-	ns	<u>-</u>	
Clock A - Low Pulse Width	to t7	30	-	ns	<u>-</u>	
Direction Input B Set-up Time	tas	40	_	ns	<u>-</u>	
Direction Input B Hold Time	t8H	20	_	ns	<u>-</u>	
Gate Input (ABG) Set-up Time	tGS	40	_	ns	_	
Gate Input (ABG) Set-up Time Gate Input (ABG) Hold Time	tGS	40 20	-	ns		
		20	- 16		$f_{0} = (1/(t_{0} + t_{7}))$	
Clock Frequency	fA to	-		MHz	$f_A = (1/(t_6 + t_7))$	
Clock to Carry or Borrow Out Delay	t9	-	50	ns	- teo - tz	
Carry or Borrow Out Pulse Width	t10	28	-	ns	$t_{10} = t_7$	
Clock to Compare Out Delay	t12	80	-	ns	-	


7266R1-101904-6


ECK High Pulse Widtht114-ns-FCK Low Pulse Widtht214-ns-FCK Low Pulse Widtht214-ns-FCK FrequencyfFCK-35MHz-Mod-n Filter Clock(FCKn)Periodt328-nst3 =FCKn frequencyfFCKn-35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3Quadrature Clock Pulse Widthtq228-nstq2Quadrature Clock Pulse Widthtq228-nstq2index Input Pulse Widthtdax85-nstq3Andex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widthts20-nsDirection Input B Set-up Timets20-ns-Direction Input B Hold TimetaH10-ns-Sate Input (ABG) Set-up TimetgS20-ns-Sate Input (ABG) Hold Time<	rks
FCK Low Pulse Widtht214-ns-FCK FrequencyfFCK-35MHz-Mod-n Filter Clock(FCKn)Periodt328-nst3 =FCKn frequencyfFCKn-35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3Cl/x2/x4 Count Clock Pulse Widthtq228-nstq2ndex Input Pulse Widthtidx85-nstq3Non-Quadrature Mode (See Fig. 6-7)nstq3Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht616-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
FCK Low Pulse Widtht214-ns-FCK FrequencyFFCK-35MHz-Mod-n Filter Clock(FCKn)Periodt328-nst3 =FCKn frequencyFFCKn-35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfqA, fqB-4.3MHzfqAQuadrature Clock to Count Delaytq15t36t3xt1/x2/x4 Count Clock Pulse Widthtq228-nstq2Index Input Pulse Widthtidx85-nstq3Index Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht616-nsDirection Input B Set-up Timets320-ns-Direction Input B Hold Timet8H10-nsGate Input (ABG) Set-up TimetGS20-nsGate Input (ABG) Hold TimetGH10-nsClock A - Low (ABG) Hold TimetGH10-nsClock A - Low Pulse Widtht616-	
FCK FrequencyfFCK-35MHz-Mod-n Filter Clock(FCKn)Periodt328-nst3 =Whether Clock(FCKn)Periodt328-nst3 =FCKn frequencyfFCKn-35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3Quadrature Clock to Count Delaytq15t36t3Xt/x2/x4 Count Clock Pulse Widthtq228-nstq2Index Input Pulse Widthtidx85-nstq3Index Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)ns-Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
Mod-n Filter Clock(FCKn)Periodt328-nst3 =FCKn frequency f_{FCKn} -35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3Quadrature Clock to Count Delaytq15t36t3Quadrature Clock to Count Delaytq15t36t3Quadrature Clock Pulse Widthtq228-nstq2ndex Input Pulse Widthtidx85-nstq2ndex Skew from AtAi-28nstaiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timetas20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
FCKn frequencyfFCKn-35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delayto15t36t3Quadrature Clock to Count Delayto15t36t3Audrature Clock Pulse Widthto228-nsto2:ndex Input Pulse Widthtidx85-nstidxndex Skew from AtAi-28nstaiCarry/Borrow/Compare Output Widthto328-nsto3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widthtr16-ns-Clock A - Low Pulse Widthtr16-ns-Direction Input B Set-up Timetss20-ns-Direction Input B Hold TimetsH10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
FCKn frequency $fFCKn$ -35MHz-Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3Quadrature Clock to Count Delaytq15t36t3Quadrature Clock Pulse Widthtq228-nstq2ndex Input Pulse Widthtidx85-nstdixndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timetas20-ns-Direction Input B Hold TimetBH10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	(n+1) (t1+t2), ere n = PSC = 0 to FFr
Quadrature Separationt457-nst4Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count DelaytQ15t36t3Quadrature Clock to Count DelaytQ15t36t3Quadrature Clock to Count DelaytQ15t36t3Quadrature Clock Pulse WidthtQ228-nstQ2ndex Input Pulse Widthtidx85-nstdidxndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output WidthtQ328-nstQ3Von-Quadrature Mode (See Fig. 6-7)ns-Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8520-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
Quadrature Clock Pulse Widtht5115-nst5Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3Quadrature Clock to Count Delaytq15t36t3Quadrature Clock Pulse Widthtq228-nstq2ndex Input Pulse Widthtidx85-nstidxndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	2t ₃
Quadrature Clock frequencyfQA, fQB-4.3MHzfQAQuadrature Clock to Count Delaytq15t36t3C1/x2/x4 Count Clock Pulse Widthtq228-nstq2ndex Input Pulse Widthtidx85-nstd2ndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	4t3
Quadrature Clock to Count Delaytq15t36t3c1/x2/x4 Count Clock Pulse Widthtq228-nstq2 :ndex Input Pulse Widthtidx85-nstidxndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	= fqв = 1/8tз
k1/x2/x4 Count Clock Pulse Widthtop28-nstopndex Input Pulse Widthtidx85-nstidxndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtop28-nstopClock A - High Pulse Widthtop28-nstopClock A - High Pulse Widthtop16-ns-Clock A - Low Pulse Widthtop16-ns-Direction Input B Set-up Timetas20-ns-Direction Input B Hold TimetaH10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
ndex Skew from AtAi-28nstAiCarry/Borrow/Compare Output Widthtq328-nstq3Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	= t3
Carry/Borrow/Compare Output Width tq3 28 - ns tq3 Non-Quadrature Mode (See Fig. 6-7) Clock A - High Pulse Width t6 16 - ns - Clock A - Low Pulse Width t7 16 - ns - Direction Input B Set-up Time t8s 20 - ns - Direction Input B Hold Time t8H 10 - ns - Clock A - Low Pulse Width t6 - ns - Direction Input B Hold Time t6S 20 - ns - Clock A - Low Pulse Width t6 - ns - Direction Input B Hold Time t6S 20 - ns - Clock A - Ns - Clock A - Low Pulse Width t7 - ns - Clock	3t ₃
Non-Quadrature Mode (See Fig. 6-7)Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGS20-ns-Gate Input (ABG) Hold TimetGH10-ns-	t3
Clock A - High Pulse Widtht616-ns-Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timet8s20-ns-Direction Input B Hold Timet8H10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	= t3
Clock A - Low Pulse Widtht716-ns-Direction Input B Set-up Timetss20-ns-Direction Input B Hold TimetsH10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
Direction Input B Set-up Timetss20-ns-Direction Input B Hold TimetsH10-ns-Gate Input (ABG) Set-up TimetGs20-ns-Gate Input (ABG) Hold TimetGH10-ns-	
Direction Input B Hold Time t8H 10 - ns - Gate Input (ABG) Set-up Time tGS 20 - ns - Gate Input (ABG) Hold Time tGH 10 - ns -	
Gate Input (ABG) Set-up Time tgs 20 - ns - Gate Input (ABG) Hold Time tgн 10 - ns -	
Gate Input (ABG) Hold Time tgH 10 - ns -	
Clock Frequency fA - 30 MHz fA =	
	= (1/ (t6 + t7))
Clock to Carry or Borrow Out Delay t9 - 30 ns -	
Carry or Borrow Out Pulse Width t10 16 - ns t10	= t7
Clock to Compare Out Delay t12 50 - ns -	

7266R1-101804-7


INPUTS/OUTPUTS


X-AXIS I/Os:	
XA (Pin 20) XB (Pin 21)	X-axis count input A X-axis count input B Either quadrature encoded clocks or non-quadrature clocks can be applied to XA and XB. In quadrature mode XA and XB are digitally filtered and decoded for UP/DN clock. In non-quadrature mode, the filter and the decoder circuits are by-passed. Also, in non-quadrature mode XA serves as the count input and XB as the UP/DOWN direction control input, with XB = 1 selecting Up Count mode and XB = 0, selecting Down Count mode.
XLCNTR/XLOL (Pin 19)	X-axis programmable input, to operate as either direct load XCNTR or direct load XOL or synchronous load XCNTR or synchronous load XOL. The synchronous load mode is intended for interfacing with the encoder Index output in quadrature clock mode. In direct load mode, a logic low level is the active level at this input. In synchronous load mode the active level can be programmed to be either logic low or logic high. Both quarter-cycle and half-cycle Index signals are supported by this input in the indexed Load mode. The synchronous function must be disabled in non-quadrature count mode (See description of IDR on P. 4)
XRCNTR/XABG (Pin 18)	X-axis programmable input to operate either as direct reset XCNTR or count enable/disable gate or synchronous reset XCNTR. The synchronous reset XCNTR mode is intended for interfacing with the encoder Index output in quadrature clock mode. In direct reset XCNTR mode, a logic low level is the active level at this input whereas in synchronous reset XCNTR mode the active level can be programmed to be either a logic low or a logic high. Both quarter-cycle and half-cycle index signals are supported by this input in the indexed reset CNTR mode. The synchronous function must be disabled in non-quadrature count mode (See description of IDR on P. 4). In count enable/disable mode, a logic high at this input enables the counter and a logic low level disables the counter.
XFLG1 (Pin 22)	X-axis programmable output to operate either as XCARRY (Active low), or XCOMPARE (generated when XPR=XCNTR; Active low), or XIDX (XFLAG bit 6) or XCARRY/XBORROW (Active low).
XFLG2 (Pin 23)	X-axis programmable output to operate as either XBORROW (Active low) or XU/ \overline{D} (XFLAG bit 5) or XE (XFLAG bit 4).
Y-AXIS I/Os: All the X-axis input YA (Pin 25) YB (Pin 24) YLCNTR/YLOL YRCNTR/YABG YFLG1 (Pin 27) YFLG2 (Pin 26)	
COMMON I/Os: WR (Pin 14)	Write input. Control/data bytes are written at the trailing edge of low level pulse applied to this input.
RD (Pin 16)	Read input. A low level applied to this input enables the FLAGs and OLs to be read on the data bus.
CS (Pin 15)	Chip select input. A low level applied to this input enables the chip for Read and Write.
C/D (Pin 13)	Control/Data input. This input selects between a control register or a data register for Read/Write. When low, a data register is selected. When high, a control register is selected.
D0 - D7 (Pins 4 - 11)	Data Bus input/output. The 8-bit three-state data bus is the I/O port through which all data transfers take place between the LS7266R1 and the host processor.
FCK (Pin 2)	Filter clock input in quadrature mode. The FCK is divided down internally by two 8-bit programmable prescalers, one for each channel.
𝔅/Ƴ (Pin 17)	Selects between X and Y axes for Read or Write. $\overline{X}/Y = 0$ selects X-axis and $\overline{X}/Y = 1$ selects Y-axis. \overline{X}/Y is overridden by D7 = 1 in Control Write Mode (C/D = 1).
V DD (Pin 3)	+5V
Vss (Pin 12)	GND

← DOWN→↓ UP → DOWN→
DIRECTION (B) \rightarrow \leftarrow t8S \rightarrow \leftarrow t8H COUNT IN (A) \rightarrow \leftarrow tGS \rightarrow \leftarrow tGH
GATE (ABG)
COUNT DISABLE COUNT DISABLE COUNT ENABLE COUNT ENABLE
$t_9 \longrightarrow 4$
$ \begin{array}{c} & & \\ \hline \\ \hline$
FIGURE 7. NON-RECYCLE, NON-QUADRATURE, BCD MODE
$A \qquad \qquad$
BW
FIGURE 8. MODULO - N, NON-QUADRATURE (Shown with N = 3)
B ← UP → DOWN _ UP →
$CNTR 0 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ (CNTR FROZEN) \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline 0 \\ (CNTR FROZEN) \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2$
COMP
BW
FIGURE 9. RANGE LIMIT, NON-QUADRATURE(Shown with PR = 4)
7266R1-100704-11

C Sample Routines for Interfacing with LS7266R1

//CMR Reg. #include<stdlib.h> #define LCNTR 0x00 #include <stdio.h> #define $\breve{C}MR(arg) (arg | 0xA0)$ #define LOL 0x02 #include <conio.h> #define XCMR(arg) (arg | 0x20) #define RCNTR 0x00 #define YCMR(arg) XCMR(arg) #define ABGate 0x04 #define BINCnt #define CYBW #define XDATA(arg) (arg +0) 0x00 0x00 #define XCMD (arg) (arg + 1)#define BCDCnt 0x01 #define CPBW 0x08 #define YDATA (arg) (arg +2) #define NrmCnt 0x00 #define CB_UPDN 0x10 #define IDX ERR #define YCMD (arg) (arg +3) #define RngLmt 0x02 0x18 #define NRcyc 0x04 // RLD Reg. #define ModN 0x06 // IDR #define $\breve{R}LD$ (arg) (arg | 0x80) #define NQDX #define IDR(arg) (arg | 0xE0) 0x00 #define QDX1 #define XRLD (arg) (arg \mid 0) 0x08 #define XIDR(arg) (arg | 0x60) #define YRLD (arg) XRLD(arg) #define ODX2 0x10 #define YIDR(arg) XIDR(arg) #define Rst BP 0x01 #define QDX4 #define DisIDX 0x00 0x18 #define Rst_CNTR 0x02 #define EnIDX 0x01 #define Rst_FLAGS 0x04 //IOR Reg. #define NIDX 0x00 #define Rst E 0x06 #define IOR(arg) (arg | 0xC0)#define PIDX 0x02 #define XIOR(arg) (arg | 0x40) #define Trf_PR_CNTR 0x08 #define LIDX 0x00 #define Trf_CNTR_OL 0x10 #define RIDX #define YIOR(arg) XIOR(arg) 0x04 #define Trf_PS0_PSC 0x18 #define DisAB 0x00 #define EnAB 0x01 void Init_7266(int Addr); Initialize 7266 as follows (X + Y CNTR)Modulo N count mode for N = 0x123456**Binary Counting** Index on LCNTR/LOL Input CY and BW outputs RCNTR/ABG controls Counters A and B Enabled */ void Init_7266(int Addr) { /Setup IOR Reg. outp(XCMD(Addr),IOR(DisAB + LOL + ABGate + CYBW)); //Disable Counters and Set CY BW Mode //Setup RLD Reg. outp(XCMD(Addr),RLD(Rst_BP + Rst_FLAGS)); //Reset Byte Pointer(BP) And Flags outp(XDATA(Addr),0x06); //Load 6 to PR0 to setup Transfer to PS0 outp(YDATA(Addr),0x06); //Load 6 to PR0 to setup Transfer to PS0 outp(XCMD(Addr),RLD(Rst E + Trf PS0 PSC)); //Reset E Flag and Transfer PR0 to PSC outp(XCMD(Addr),RLD(Rst_BP + Rst_CNTR)); //Reset BP and Reset Counter //Setup IDR Reg. outp(XCMD(Addr),IDR(EnIDX + NIDX + LIDX)); //Enable Negative Index on LCNTR/LOL Input //Setup CMR Reg. outp(XCMD(Addr),CMR(BINCnt + ModN + QDX4)); //Set Binary Mondulo N Quadrature x4

```
//Setup PR Reg. for Modulo N Counter to 0x123456
  outp(XDATA(Addr),0x56); //Least significant Byte first
  outp(XDATA(Addr),0x34); //then middle byte
   outp(XDATA(Addr),0x12); //then most significant byte
  //Setup PR Reg. for Modulo N Counter to 0x123456
   outp(YDATA(Addr),0x56); //Least significant Byte first
   outp(YDATA(Addr),0x34); //then middle byte
   outp(YDATA(Addr),0x12); //then most significant byte
   //Enable Counters
   outp(XCMD(Addr),IOR(EnAB));
}
/* Write 7266 PR
Input: Addr has Address of 7266 counter.
Data: has 24 bit data to be written to PR register
*/
void Write_7266_PR(int Addr, unsigned long Data);
void Write_7266_PR(int Addr, unsigned long Data)
   outp(XCMD(Addr),RLD(Rst_BP));
                                           //Reset Byte Pointer to Synchronize Byte Writing
   outp(XDATA(Addr),(unsigned char)Data);
   Data >>= 8:
   outp (XDATA(Addr),(unsigned char)Data);
   Data >>= 8;
   outp(XDATA(Addr),(unsigned char)Data);
}
/* Read 7266 OL
   Input: Addr has Address of 7266 counter.
   Output: Data returns 24 bit OL register value.
*/
unsigned long Read_7266_OL(int Addr);
unsigned long Read_7266_OL(int Addr)
  unsigned long Data=0;
   outp(XCMD(Addr),(RLD(Rst_BP + Trf_Cntr_OL)); //Reset Byte Pointer to Synchronize Byte reading and
                                                       Transferring of data from counters to OL.
   Data |=(unsigned long)inp(XDATA(Addr));
                                                     //read byte 0 from OL
                                              //Rotate for next Byte
   lrotr(Data,8);
   Data =(unsigned long)inp(XDATA(Addr));
                                                    //read byte 1 from OL
                                              //Rotate for next Byte
   lrotr(Data,8);
   Data |=(unsigned long)inp(XDATA(Addr)); //read byte 2 from OL
   lrotr(Data,16);
                                             //Rotate for last Byte
   return(Data);
/*
    Get_7266_Flags
    Input: Addr has Address of 7266 counter.
    returns Flags of counter
*/
unsigned char Get_7266_Flags(int Addr);
unsigned char Get_7266_Flags(int Addr)
ł
    return(inp(CMD(Addr)));
}
```