RGB Driver for LCD

Description

The CXA1853AQ is an RGB driver for LCD panels.
It supports a line alternative RGB drive system.

Features

- Built-in RGB signal phase matching sample-andhold circuit
- Effective frequency response (18 MHz Typ.)
- Built-in gain and breakpoint variable 2-point γ compensation circuit
- Built-in side black generation circuit for 4:3/16:9 aspect conversion
- Built-in VCOM voltage output circuit

Structure

Bipolar silicon monolithic IC

Applications

- Liquid crystal projectors
- Liquid crystal viewfinders
- Compact liquid crystal monitors

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage	Vcc1	6	V
	Vcc 2	15	V
- Input pin voltage	V IN	$\mathrm{Vcc1}$	V
- Operating temperature	Topr	-25 to +75	${ }^{\circ} \mathrm{C}$
- Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$
- Allowable power dissipation			
	Pd	1500	mW

Operating Conditions

- Supply voltage Vcc1 4.75 to 5.25 V

Vcc2 11.0 to 14.0 V

- RGB input signal voltage
$\begin{array}{lll}\text { Vin } & 0.7 & \text { Vp-p Note) }\end{array}$

Note) Defined as the amplitude from the pedestal level to white.

Block Diagram

Pin Description
$(\mathrm{Vcc} 1=5 \mathrm{~V}, \mathrm{Vcc} 2=13 \mathrm{~V})$

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
1	RGB MBRT	1.6 to $5.0 \mathrm{~V}^{*}$		RGB signal common main brightness control. Preset internally to 3.3 V .
4	R MBRT	1.6 to $5.0 \mathrm{~V}^{*}$		R signal main brightness control. Preset internally to 3.3 V .
5	B MBRT	1.6 to $5.0 \mathrm{~V}^{*}$		B signal main brightness control. Preset internally to 3.3 V .
7	GAM OUT			G signal output of which main bright and gamma are adjusted and insert the reference signal.
8	Vcc1	5V		5 V power supply.
9	RIN			R signal input. Input a 0.7Vp-p signal. ${ }^{\text {Note 2) }}$
10	GIN			G signal input. Input a 0.7Vp-p signal. ${ }^{\text {Note 2) }}$
11	BIN			B signal input. Input a 0.7Vp-p signal. ${ }^{\text {Note 2) }}$
12	GND	OV		GND.
13	SID OUT			SID signal output.

Note 1) * in the Pin voltage indicates external applied voltage.
Note 2) Defined as the amplitude from the pedestal level to white.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
14	Vcc2	13V		13V power supply.
15	R OUT			R signal output.
16	G OUT			G signal output.
17	B OUT			B signal output.
18	Vcc3	5 V		5 V power supply.
22	GND	OV		GND.
23	RGB SBRT	1.6 to $5.0 \mathrm{~V}^{*}$		RGB signal common sub brightness control.
24	B SBRT	1.6 to $5.0 \mathrm{~V}^{*}$		B signal sub brightness control. Preset internally to 3.3 V .
25	R SBRT	1.6 to $5.0 \mathrm{~V}^{*}$		R signal sub brightness control. Preset internally to 3.3 V .
26	B CLP	4.7 to $8.3 V^{*}$		B output detection signal input.
27	G CLP			G output detection signal input.
28	R CLP			R output detection signal input.

Note) * in the Pin voltage indicates external applied voltage.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
29	SID CLP	4.7 to 8.3V*		SID output detection signal input. Use an average value detecting external capacitor with a small leak current absolute value and tolerance.
30	SID CTR	1.6 to $5.0 \mathrm{~V}^{*}$		SID output amplitude control. Preset internally to 3.3V.
31	PRG CTR	1.6 to 5.0V*		Level control for the PRG signal inserted into the SID signal.
32	FRP			FRP input. This pulse is used to invert the polarity of the RGB output. Output is inverted when Low, and noninverted when High. Input level: High $\geq 4 V$ Low $\leq 1 V$
33	SID FRP			FRP pulse input for SID output. This pulse is used to invert the polarity of the SID output. Output is inverted when Low, and non-inverted when High. Input level: High $\geq 4 V$ Low $\leq 1 V$
34	GND	OV		GND.

Note) * in the Pin voltage indicates external applied voltage.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
35	PRG	$\frac{\square^{5 v}}{0 \mathrm{~V}}$		PRG pulse input. This pulse is used to insert the PRG signal into the SID output. Input level: High $\geq 4 \mathrm{~V}$ $\text { Low } \leq 1 \mathrm{~V}$
36	VCOM CTR	1.6 to $5.0 \mathrm{~V}^{*}$		VCOM voltage control. The VCOM voltage variable range is -0.8 V to +1.3 V with respect to the signal center voltage.
37	SIG CENT CTR	1.6 to $5.0 \mathrm{~V}^{*}$		RGB and SID signal center voltage control.
38	VCOM OUT	3.4 to 9.1V*		VCOM voltage output.
39	BLK LIM	1.6 to $5.0 \mathrm{~V}^{*}$		Limiter control for limiting the output amplitude of the RGB signal. Preset internally to 3.3V.

Note) * in the Pin voltage indicates external applied voltage.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
40	BLK CENT	1.6 to $5.0 \mathrm{~V}^{*}$		RGB signal output limiter center control. Preset internally to 3.3 V . When preset, the limiter center becomes equal to the RGB output center.
41	WHT LIM	1.6 to $5.0 \mathrm{~V}^{*}$		RGB signal white peak limiter control. Preset internally to 3.3 V .
42	GAM SEL	$5.0 \mathrm{~V}^{*}$		Gamma circuit control. Gamma ON when High, gamma OFF when Low. Input level: High $\geq 4 \mathrm{~V}$ Low $\leq 1 \mathrm{~V}$
43	XCLP2			Reference signal pulse input. Reference level when Low. Input level: High $\geq 4 \mathrm{~V}$ Low $\leq 1 \mathrm{~V}$
44	XCLP1			Clamp pulse input. Clamped when Low. Input level: High $\geq 4 \mathrm{~V}$ Low $\leq 1 \mathrm{~V}$
45	RGB GAIN	1.6 to $5.0 \mathrm{~V}^{*}$		Gain control for RGB signal common variable gain amplifier.

Note) * in the Pin voltage indicates external applied voltage.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
46	R GAIN	1.6 to $5.0 \mathrm{~V}^{*}$		Gain control for R signal variable gain amplifier. Preset internally to 3.3V.
47	B GAIN	1.6 to $5.0 \mathrm{~V}^{*}$		Gain control for B signal variable gain amplifier. Preset internally to 3.3V.
48	GND	OV		GND.
49	IREF	1.2V		Sample-and -hold circuit current setting.
50	Vcc4	5.0 V		5 V power supply.
51	GCADET B			B GCA circuit clamp detection.
52	GCADET G	1.8V Typ.		G GCA circuit clamp detection.
53	GCADET R		GND	R GCA circuit clamp detection.
54	SIG SEL	0 to $5.0 \mathrm{~V}^{*}$		Selection of input signal to Sample-and -hold circuit. R and B signals selected when High, G signal selected when Low. Input level: High $\geq 4 \mathrm{~V}$ Low $\leq 1 V$
55	GND	OV		GND.
56	SH4		PVcc	
57	SH3	5 V		input. Input level: $\mathrm{High}>3.0 \mathrm{~V}$
58	SH2	OV	(59) $\sum 100$	Sampling when High, hold
61	SH1			
62	PVcc	5 V		5V power supply.

Note) * in the Pin voltage indicates external applied voltage.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
63	SH IN	$2.25 \mathrm{~V}$ Reference level		Sample-and-hold circuit input.
64	GND	OV		GND.
65	B CLAMP			B signal clamp detection.
66	G CLAMP	2.1V Typ.		G signal clamp detection.
67	R CLAMP			R signal clamp detection.
68	RGB GAM GAIN 1	1.6 to $5.0 \mathrm{~V}^{*}$		RGB signal common black side voltage gain control.
69	R GAM GAIN 1	1.6 to $5.0 \mathrm{~V}^{*}$		R signal black side voltage gain control. Preset internally to 3.3 V .
70	B GAM GAIN 1	1.6 to $5.0 \mathrm{~V}^{*}$		B signal black side voltage gain control. Preset internally to 3.3 V .
71	RGB GAM GAIN 2	1.6 to $5.0 \mathrm{~V}^{*}$		RGB signal common white side voltage gain control.

Note) * in the Pin voltage indicates external applied voltage.

$\begin{aligned} & \text { Pin } \\ & \text { NO. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
72	R GAM GAIN 2	1.6 to $5.0 \mathrm{~V}^{*}$		R signal white side voltage gain control. Preset internally to 3.3 V .
73	B GAM GAIN 2	1.6 to 5.0V*		B signal white side voltage gain control. Preset internally to 3.3 V .
74	RGB GAM CTR 2	1.6 to 5.0V*		RGB signal common white side voltage gain change point control.
75	R GAM CTR 2	1.6 to 5.0V*		R signal white side voltage gain change point control. Preset internally to 3.3 V .
76	B GAM CTR 2	1.6 to 5.0V*		B signal white side voltage gain change point control. Preset internally to 3.3 V .
77	RGB GAM CTR 1	1.6 to $5.0 V^{*}$		RGB signal common black side voltage gain change point control.
78	R GAM CTR 1	1.6 to $5.0 V^{*}$		R signal black side voltage gain change point control. Preset internally to 3.3 V .
79	B GAM CTR 1	1.6 to 5.0V*		B signal black side voltage gain change point control. Preset internally to 3.3 V .

Note) * in the Pin voltage indicates external applied voltage.

Electrical Characteristics

Unless otherwise specified: $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc} 1=\mathrm{Vcc} 3=\mathrm{Vcc} 4=\mathrm{PVcc}=5 \mathrm{~V}, \mathrm{Vcc} 2=13 \mathrm{~V}$
SW1 = OFF, SW4 = OFF, SW5 = OFF, SW9 = a, SW10 = a, SW11 =a,
SW24 = OFF, SW25 = OFF, SW26 = a, SW27 =a, SW28 =a,SW29 =a,

$$
\text { SW30 }=\text { OFF, SW } 36=\text { OFF, SW37 }=\text { OFF, SW } 39=\text { OFF, SW } 40=\text { OFF, }
$$

SW41 = OFF, SW46 = OFF, SW47 = OFF, SW51 = a, SW52 =a,
SW53 =a, SW63 = a, SW65 = a, SW66 =a, SW67 =a, SW69 = OFF,
SW70 = OFF, SW72 = OFF, SW73 = OFF, SW75 = OFF, SW76 = OFF,

$$
\mathrm{SW} 78=\mathrm{OFF}, \mathrm{SW} 79=\mathrm{OFF}, \mathrm{~V} 23=3.1 \mathrm{~V}, \mathrm{~V} 31=3.5 \mathrm{~V}, \mathrm{~V} 42=5.0 \mathrm{~V},
$$

$$
\mathrm{V} 45=2.8 \mathrm{~V}, \mathrm{~V} 54=5.0 \mathrm{~V}, \mathrm{~V} 68=1.6 \mathrm{~V}, \mathrm{~V} 71=1.6 \mathrm{~V}, \mathrm{~V} 74=1.6 \mathrm{~V}, \mathrm{~V} 77=5.0 \mathrm{~V}
$$

Set (RIN), (G IN), (B IN) and (TEST IN) = 0V, (SH1), (SH2), (SH3) and (SH4) = 5V, and input SG4 to (FRP) and (SID FRP), SG5 to (PRG),
SG2 to (XCLP2) and SG3 to (XCLP1).

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
1	Current consumption (1)	Icc1	Measure the current entering Pin 8.	-	30	44	mA
2	Current consumption (2)	Icc2	Measure the current entering Pin 14.	-	11	18	mA
3	Current consumption (3)	Icc3	Measure the current entering Pin 18.	-	6	10	mA
4	Current consumption (4)	Icc4	Measure the current entering Pin 50.	-	29	43	mA
5	Current consumption (5)	Icc5	Measure the current entering Pin 62.	-	4	7	mA
6	R IN pin current "Z"	IZ9	SW9 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 9=2.4 \mathrm{~V}$	-1.5	0	1.5	$\mu \mathrm{A}$
7	R IN pin current "H"	IH9	SW9 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 9=3.4 \mathrm{~V}$	13	25	-	$\mu \mathrm{A}$
8	R IN pin current "L"	IL9	$\mathrm{SW} 9 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 9=1.4 \mathrm{~V}$	-	-25	-13	$\mu \mathrm{A}$
9	G IN pin current "Z"	IZ10	$\mathrm{SW} 10 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 10=2.4 \mathrm{~V}$	-1.5	0	1.5	$\mu \mathrm{A}$
10	G IN pin current "H"	IH10	$\mathrm{SW} 10 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 10=3.4 \mathrm{~V}$	13	25	-	$\mu \mathrm{A}$
11	G IN pin current "L"	IL10	$\mathrm{SW} 10 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 10=1.4 \mathrm{~V}$	-	-25	-13	$\mu \mathrm{A}$
12	B IN pin current "Z"	IZ11	$\mathrm{SW} 11 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 11=2.4 \mathrm{~V}$	-1.5	0	1.5	$\mu \mathrm{A}$
13	B IN pin current "H"	IH11	$\mathrm{SW} 11 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 11=3.4 \mathrm{~V}$	13	25	-	$\mu \mathrm{A}$
14	B IN pin current "L"	IL11	$\mathrm{SW} 11 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 11=1.4 \mathrm{~V}$	-	-25	-13	$\mu \mathrm{A}$
15	RGB SBRT pin current	123	$\mathrm{V} 23=5.0 \mathrm{~V}$	-	2.5	6	$\mu \mathrm{A}$
16	B CLP pin current	126	SW26 \rightarrow b, V26 $=7.0 \mathrm{~V}$	-0.2	0	0.2	$\mu \mathrm{A}$
17	G CLP pin current	127	$\mathrm{SW} 27 \rightarrow \mathrm{~b}, \mathrm{~V} 27=7.0 \mathrm{~V}$	-0.2	0	0.2	$\mu \mathrm{A}$
18	R CLP pin current	128	SW28 \rightarrow b, V28 $=7.0 \mathrm{~V}$	-0.2	0	0.2	$\mu \mathrm{A}$
19	SID CLP pin current	129	SW29 \rightarrow b, V29 $=7.0 \mathrm{~V}$	-0.2	0	0.2	$\mu \mathrm{A}$
20	PRG CTR pin current	131	$\mathrm{V} 31=5.0 \mathrm{~V}$	-	0.3	0.8	$\mu \mathrm{A}$
21	FRP pin current "H"	IH32	$(\mathrm{FRP})=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
22	FRP pin current " L "	IL32	$(\mathrm{FRP})=0 \mathrm{~V}$	-0.3	-0.1	-	$\mu \mathrm{A}$
23	SID FRP pin current "H"	IH33	$(\mathrm{SID} \mathrm{FRP})=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
24	SID FRP pin current "L"	IL33	$(\mathrm{SID} \mathrm{FRP})=0 \mathrm{~V}$	-0.3	-0.1	-	$\mu \mathrm{A}$
25	PRG pin current "H"	IH35	$(\mathrm{PRG})=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
26	PRG pin current "L"	IL35	$(\mathrm{PRG})=0 \mathrm{~V}$	-0.3	-0.1	-	$\mu \mathrm{A}$
27	GAM SEL pin current "H"	IH42	$\mathrm{V} 42=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
28	GAM SEL pin current "L"	IL42	$\mathrm{V} 42=0 \mathrm{~V}$	-	-1.7	-0.4	$\mu \mathrm{A}$
29	XCLP2 pin current "H"	IH43	$(\mathrm{XCLP} 2)=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
30	XCLP2 pin current "L"	IL43	$(\mathrm{XCLP} 2)=0 \mathrm{~V}$	-	-1.0	-0.3	$\mu \mathrm{A}$
31	XCLP1 pin current " H "	IH44	$(\mathrm{XCLP} 1)=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
32	XCLP1 pin current "L"	IL44	$(\mathrm{XCLP} 1)=0 \mathrm{~V}$	-1.0	-0.2	-	$\mu \mathrm{A}$
33	RGB GAIN pin current	145	$\mathrm{V} 45=5 \mathrm{~V}$	-	0.5	1.3	$\mu \mathrm{A}$
34	GCA DET B pin current "Z"	IZ51	SW51 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 51=2.0 \mathrm{~V}$	-0.5	0	0.5	$\mu \mathrm{A}$
35	GCA DET B pin current "H"	IH51	SW51 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 51=3.0 \mathrm{~V}$	15	30	-	$\mu \mathrm{A}$
36	GCA DET B pin current "L"	IL51	$\mathrm{SW} 51 \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 51=1.0 \mathrm{~V}$	-	30	-15	$\mu \mathrm{A}$
37	GCA DET G pin current " Z "	IZ52	SW52 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 52=2.0 \mathrm{~V}$	-0.5	0	0.5	$\mu \mathrm{A}$
38	GCA DET G pin current " H "	IH52	SW52 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 52=3.0 \mathrm{~V}$	15	30	-	$\mu \mathrm{A}$
39	GCA DET G pin current "L"	IL52	SW52 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 52=1.0 \mathrm{~V}$	-	-30	-15	$\mu \mathrm{A}$
40	GCA DET R pin current "Z"	IZ53	SW53 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 53=2.0 \mathrm{~V}$	-0.5	0	0.5	$\mu \mathrm{A}$
41	GCA DET R pin current "H"	IH53	SW53 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 53=3.0 \mathrm{~V}$	15	30	-	$\mu \mathrm{A}$
42	GCA DET R pin current "L"	IL53	SW53 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 53=1.0 \mathrm{~V}$	-	-30	-15	$\mu \mathrm{A}$
43	SIG SEL pin current "H"	154H	$\mathrm{V} 54=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
44	SIG SEL pin current "L"	154L	$\mathrm{V} 54=0 \mathrm{~V}$	-3.0	-1.0	-	$\mu \mathrm{A}$
45	SH4 pin current "H"	156H	$(\mathrm{SH} 4)=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
46	SH4 pin current "L"	156L	$(\mathrm{SH} 4)=0 \mathrm{~V}$	-5.0	-2.0	-	$\mu \mathrm{A}$
47	SH3 pin current "H"	157H	$(\mathrm{SH} 3)=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
48	SH3 pin current "L"	157L	$(\mathrm{SH} 3)=0 \mathrm{~V}$	-5.0	-2.0	-	$\mu \mathrm{A}$
49	SH2 pin current "H"	I58H	$(\mathrm{SH} 2)=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
50	SH2 pin current "L"	158L	$(\mathrm{SH} 2)=0 \mathrm{~V}$	-5.0	-2.0	-	$\mu \mathrm{A}$
51	SH1 pin current "H"	161H	$(\mathrm{SH} 1)=5 \mathrm{~V}$	-0.1	0	0.1	$\mu \mathrm{A}$
52	SH1 pin current "L"	161L	$(\mathrm{SH} 1)=0 \mathrm{~V}$	-5.0	-2.0	-	$\mu \mathrm{A}$
53	SH IN pin current "Z"	IZ63	SW63 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=5 \mathrm{~V}, \mathrm{~V} 63=2.2 \mathrm{~V}$	-1.5	0	1.5	$\mu \mathrm{A}$
54	SH IN pin current "H"	IH63	SW63 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 63=3.2 \mathrm{~V}$	13	25	-	$\mu \mathrm{A}$
55	SH IN pin current "L"	IL63	SW63 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 63=1.2 \mathrm{~V}$	-	-25	-13	$\mu \mathrm{A}$
56	B CLAMP pin current " Z "	IZ65	SW65 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 65=2.0 \mathrm{~V}$	-0.5	0	0.5	$\mu \mathrm{A}$
57	B CLAMP pin current "H"	IH65	SW65 \rightarrow b, (XCLP1) $=0 \mathrm{~V}, \mathrm{~V} 65=3.0 \mathrm{~V}$	15	40	-	$\mu \mathrm{A}$
58	B CLAMP pin current "L"	IL65	SW65 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 65=1.0 \mathrm{~V}$	-	-40	-15	$\mu \mathrm{A}$
59	G CLAMP pin current "Z"	IZ66	SW66 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 66=2.0 \mathrm{~V}$	-0.5	0	0.5	$\mu \mathrm{A}$
60	G CLAMP pin current " H "	IH66	SW66 \rightarrow b, (XCLP1) $=0 \mathrm{~V}, \mathrm{~V} 66=3.0 \mathrm{~V}$	15	40	-	$\mu \mathrm{A}$
61	G CLAMP pin current "L"	IL66	SW66 $\rightarrow \mathrm{b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 66=1.0 \mathrm{~V}$	-	-40	-15	$\mu \mathrm{A}$
62	R CLAMP pin current "Z"	IZ67	SW67 \rightarrow b, (XCLP1) $=5 \mathrm{~V}, \mathrm{~V} 67=2.0 \mathrm{~V}$	-0.5	0	0.5	$\mu \mathrm{A}$
63	R CLAMP pin current "H"	IH67	SW67 \rightarrow b, (XCLP1) $=0 \mathrm{~V}, \mathrm{~V} 67=3.0 \mathrm{~V}$	15	40	-	$\mu \mathrm{A}$
64	R CLAMP pin current "L"	IL67	$\mathrm{SW67} \rightarrow \mathrm{~b},(\mathrm{XCLP} 1)=0 \mathrm{~V}, \mathrm{~V} 67=1.0 \mathrm{~V}$	-	-40	-15	$\mu \mathrm{A}$
65	RGB GAM GAIN1 pin current	168	$\mathrm{V} 68=5.0 \mathrm{~V}$	-	0.5	1.3	$\mu \mathrm{A}$

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
66	RGB GAM GAIN2 pin current	171	$\mathrm{V} 71=5.0 \mathrm{~V}$	-	0.5	1.3	$\mu \mathrm{A}$
67	RGB GAM CTR2 pin current	174	$\mathrm{V} 74=5.0 \mathrm{~V}$	-	0.5	1.3	$\mu \mathrm{A}$
68	RGB GAM CTR1 pin current	177	$\mathrm{V} 77=5.0 \mathrm{~V}$	-	0.5	1.3	$\mu \mathrm{A}$
69	RIN pin voltage	V9		1.3	1.7	2.1	V
70	GIN pin voltage	V10		1.3	1.7	2.1	V
71	BIN pin voltage	V11		1.3	1.7	2.1	V
72	B SBRT pin voltage	V24		2.9	3.3	3.7	V
73	R SBRT pin voltage	V25		2.9	3.3	3.7	V
74	SID CTR pin voltage	V30		2.9	3.3	3.7	V
75	VCOM CTR pin voltage	V36		2.9	3.3	3.7	V
76	SIG CENT CTR pin voltage	V37		2.9	3.3	3.7	V
77	BLK LIM pin voltage	V39		2.9	3.3	3.7	V
78	BLK CENT pin voltage	V40		2.9	3.3	3.7	V
79	WHT LIM pin voltage	V41		2.9	3.3	3.7	V
80	R GAIN pin voltage	V46		2.9	3.3	3.7	V
81	B GAIN pin voltage	V47		2.9	3.3	3.7	V
82	IREF pin voltage	V49		0.8	1.2	1.6	V
83	GCA DET B pin voltage	V51		1.2	1.8	2.4	V
84	GCA DET G pin voltage	V52		1.2	1.8	2.4	V
85	GCA DET R pin voltage	V53		1.2	1.8	2.4	V
86	SH IN pin voltage	V63		1.9	2.3	2.7	V
87	B CLAMP pin voltage	V65		1.6	2.1	2.6	V
88	G CLAMP pin voltage	V66		1.6	2.1	2.6	V
89	R CLAMP pin voltage	V67		1.6	2.1	2.6	V
90	R GAM GAIN1 pin voltage	V69		2.9	3.3	3.7	V
91	B GAM GAIN1 pin voltage	V70		2.9	3.3	3.7	V
92	R GAM GAIN2 pin voltage	V72		2.9	3.3	3.7	V
93	B GAM GAIN2 pin voltage	V73		2.9	3.3	3.7	V
94	R GAM CTR2 pin voltage	V75		2.9	3.3	3.7	V
95	B GAM CTR2 pin voltage	V76		2.9	3.3	3.7	V
96	R GAM CTR1 pin voltage	V78		2.9	3.3	3.7	V
97	B GAM CTR1 pin voltage	V79		2.9	3.3	3.7	V
98	RGB MBRT pin voltage	V1		2.9	3.3	3.7	V
99	R MBRT pin voltage	V4		2.9	3.3	3.7	V
100	B MBRT pin voltage	V5		2.9	3.3	3.7	V
101	RGB MBRT input impedance	Z1		45	80	110	k Ω

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
102	R MBRT input impedance	Z4		45	80	110	$\mathrm{k} \Omega$
103	B MBRT input impedance	Z5		45	80	110	$\mathrm{k} \Omega$
104	B SBRT input impedance	Z24		45	80	110	$\mathrm{k} \Omega$
105	R SBRT input impedance	Z25		45	80	110	$\mathrm{k} \Omega$
106	SID CTR input impedance	Z30		45	80	110	k Ω
107	VCOM CTR input impedance	Z36		45	80	110	$\mathrm{k} \Omega$
108	SIG CENT CTR input impedance	Z37		45	80	110	$\mathrm{k} \Omega$
109	BLK LIM input impedance	Z39		55	100	150	$\mathrm{k} \Omega$
110	BLK CENT input impedance	Z40		55	100	150	k Ω
111	WHT LIM input impedance	Z41		55	100	150	$\mathrm{k} \Omega$
112	R GAIN input impedance	Z46		45	80	110	$\mathrm{k} \Omega$
113	B GAIN input impedance	Z47		45	80	110	$\mathrm{k} \Omega$
114	R GAM GAIN1 input impedance	Z69		45	80	110	$\mathrm{k} \Omega$
115	B GAM GAIN1 input impedance	Z70		45	80	110	$\mathrm{k} \Omega$
116	R GAM GAIN2 input impedance	Z72		45	80	110	$\mathrm{k} \Omega$
117	B GAM GAIN2 input impedance	Z73		45	80	110	$\mathrm{k} \Omega$
118	R GAM CTR2 input impedance	Z75		45	80	110	k Ω
119	B GAM CTR2 input impedance	Z76		45	80	110	$\mathrm{k} \Omega$
120	R GAM CTR1 input impedance	Z78		45	80	110	$\mathrm{k} \Omega$
121	B GAM CTR1 input impedance	Z79		45	80	110	$\mathrm{k} \Omega$

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
122	RGB GAIN adjustment range (1)	$\Delta \mathrm{Gcs} 1$	Set SW41 \rightarrow ON, V41 $=1.6 \mathrm{~V}, \mathrm{~V} 42=0 \mathrm{~V}$, $\mathrm{V} 54=0 \mathrm{~V}$ and input SG1 (0 dB) to (TEST IN). Then adjust V45 so that the non-inverted output amplitude (black to white) at TP16 is 5 times the input signal amplitude and label this as V . Input SG1 (-6 dB) to (TEST IN) and label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with $\mathrm{V} 45=\mathrm{VI}$ as Vrst, Vgst and Vbst, and the inverted output amplitudes as Vrsta, Vgsta and Vbsta, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with	4.0	6.0	-	dB
123	RGB GAIN adjustment range (2)	$\Delta \mathrm{Gcs} 2$	inverted output amplitudes as VRSMA, VGSMA and VBSMA, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with V45 $=1.6 \mathrm{~V}$ as VRSN, VGSN and VbSN, and the inverted output amplitudes as VrSNA, VGSNA and VBSNA, respectively. $\begin{aligned} \Delta G c s 1 & =20 \log (\operatorname{VRSM}(\mathrm{~A}) / \operatorname{VRST}(\mathrm{A})) \\ & =20 \log (\operatorname{VGSM}(\mathrm{~A}) / \operatorname{VGST}(\mathrm{A})) \\ & =20 \log (\operatorname{VBSM}(\mathrm{~A}) / \operatorname{VBST}(\mathrm{A})) \\ \Delta \mathrm{GcS} 2 & =20 \log (\operatorname{VRSN}(\mathrm{~A}) / \operatorname{VRST}(\mathrm{A})) \\ & =20 \log (\operatorname{VGSN}(\mathrm{~A}) / \operatorname{VGST}(\mathrm{A})) \\ & =20 \log (\operatorname{VBSN}(\mathrm{~A}) / \operatorname{VBST}(\mathrm{A})) \end{aligned}$	-	-6.0	-4.0	dB
124	R GAIN adjustment range (1)	$\Delta \mathrm{GRS} 1$	Set V42 = 0V, V54 = 0V, input SG1 (-6 dB) to (TEST IN), and set V45 = VI, SW46 $\rightarrow \mathrm{ON}$, $\mathrm{SW} 41 \rightarrow \mathrm{ON}, \mathrm{V} 41=1.6 \mathrm{~V}$ and $\mathrm{V} 46=5.0 \mathrm{~V}$. Then label the non-inverted output amplitude (black to white) at TP15 as VRSTM and the inverted output amplitude as VRSTMA.	2.5	4.6	-	dB
125	R GAIN adjustment range (2)	$\Delta \mathrm{GRS} 2$	Next, label the non-inverted output amplitude (black to white) at TP15 with V46 $=1.6 \mathrm{~V}$ as VRSTN and the inverted output amplitude as Vrstna. Δ GRS1 $=20 \log (\operatorname{VRSTM}(\mathrm{~A}) / \operatorname{VGST}(\mathrm{A}))$ $\Delta \mathrm{GRS}_{2}=20 \log (\operatorname{VRSTN}(\mathrm{~A}) / \operatorname{VGST}(\mathrm{A}))$	-	-4.6	-2.5	dB
126	B GAIN adjustment range (1)	$\Delta \mathrm{GbS} 1$	Set V42 $=0 \mathrm{~V}$, V54 $=0 \mathrm{~V}$, input SG1 (-6 dB) to (TEST IN), and set V45 = VI, SW47 \rightarrow ON, $\mathrm{SW} 41 \rightarrow \mathrm{ON}, \mathrm{V} 41=1.6 \mathrm{~V}$ and $\mathrm{V} 47=5.0 \mathrm{~V}$. Then label the non-inverted output amplitude (black to white) at TP17 as VBSTM and the inverted output amplitude as VBSTMA.	2.5	4.6	-	dB
127	B GAIN adjustment range (2)	$\Delta \mathrm{GbS2}$	Next, label the non-inverted output amplitude (black to white) at TP17 with V47 $=1.6 \mathrm{~V}$ as VBSTN and the inverted output amplitude as Vbstna. Δ GBS1 $=20 \log (\operatorname{VBSTM}(\mathrm{~A}) / \operatorname{VGST}(\mathrm{A}))$ $\Delta \mathrm{GBS} 2=20 \log (\operatorname{VBSTN}(\mathrm{~A}) / \operatorname{VGST}(\mathrm{A}))$	-	-4.6	-2.5	dB

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
128	RGB MBRT adjustment range (1)	$\Delta V_{\text {bM1 }}$	Label the DC potentials at TP9, TP10 and TP11 as VRT, VGT and Vbt, respectively. Next, label the DC potentials at TP9, TP10 and TP11 with SW1 $\rightarrow \mathrm{ON}$ and $\mathrm{V} 1=5.0 \mathrm{~V}$ as VRN, VGN and VBN, respectively. Next, label the DC potentials at TP9, TP10	-	-0.35	-0.30	V
129	RGB MBRT adjustment range (2)	$\Delta \mathrm{V}_{\text {bM2 }}$	and TP11 with V1 = 1.6 V as VRM, VGM and VBm, respectively. $\begin{aligned} \Delta \mathrm{VBM} 1= & \text { VRN }- \text { VRT, VGN }- \text { VGT, }, \\ & \text { VBN }- \text { VBT } \\ \Delta \text { VBM2 }= & \text { VRM }- \text { VRT, VGM }- \text { VGT, }, \\ & \text { VBM }- \text { VBT }^{2} \end{aligned}$	0.30	0.35	-	V
130	R MBRT adjustment range (1)	$\Delta \mathrm{VBR}^{1}$	Label the DC potential at TP9 with SW4 \rightarrow ON and $\mathrm{V} 4=5.0 \mathrm{~V}$ as VRTN. Next, label the DC potential at TP9 with V4 =	-	-0.16	-0.12	V
131	R MBRT adjustment range (2)	$\Delta V_{B R 2}$	1.6 V as VRTM. $\Delta \mathrm{V}_{\mathrm{BR} 1}=\mathrm{V}_{\mathrm{RTN}}-\mathrm{V}_{\mathrm{GT}}$ $\Delta \mathrm{V}_{\mathrm{BR} 2}=\mathrm{VRTM}-\mathrm{VGT}$	0.12	0.16	-	V
132	B MBRT adjustment range (1)	$\Delta \mathrm{VBB}^{1}$	Label the DC potential at TP11 with SW5 \rightarrow ON and $\mathrm{V} 5=5.0 \mathrm{~V}$ as VB TN. Next, label the DC potential at TP11 with V5 =	-	-0.16	-0.12	V
133	B MBRT adjustment range (2)	$\Delta \mathrm{V}$ BB2	$\begin{aligned} & \Delta V_{B B 1}=\mathrm{VBTN}-\mathrm{VGT} \\ & \Delta \mathrm{VBB}^{2}=\mathrm{VBTM}^{2}-\mathrm{VGT} \end{aligned}$	0.12	0.16	-	V
134	Maximum RGB output amplitude	\triangle VBmax	Set SW39 $\rightarrow \mathrm{ON}, \mathrm{V} 39=1.6 \mathrm{~V}, \mathrm{~V} 45=5.0 \mathrm{~V}$ and $\mathrm{V} 23=5.0 \mathrm{~V}$. Then measure the amplitudes (black to black) at TP15, TP16 and TP17.	10.0	10.7	-	Vp-p
135	RGB SBRT adjustment range (1)	Vsbn	Set SW39 \rightarrow ON and V39 $=1.6 \mathrm{~V}$. Then label the non-inverted reference level potentials at TP15, TP16 and TP17 as VsRT, VsGT and Vsbt, and the inverted reference level potentials as Vsrta, VsGta and Vsbta, respectively. Next, label the non-inverted reference level potentials at TP15, TP16 and TP17 with V23 $=$ 1.6 V as VsRn, VsGn and Vsbn, and the inverted reference level potentials as VsRNA,	-	-0.7	0	V
136	RGB SBRT adjustment range (2)	VSBM	VsGNA and VsBNA, respectively. Next, label the non-inverted reference level potentials at TP15, TP16 and TP17 with V23 $=5.0 \mathrm{~V}$ as Vsrm, VsGm and Vsbm, and the inverted reference level potentials as Vsrma, VsGma and Vsbma, respectively. Vsbn $=$ VsRna - VsRn, VsGNA - VsGn, Vsbna - Vsbn Vsbm $=$ VsRma - Vsrm, VsGma - Vsgm, Vsbma - Vsbm	8.5	10.7	-	V

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
137	R SBRT adjustment range (1)	$\Delta \mathrm{V}$ SSR1	Set SW39 \rightarrow ON, V39 $=1.6 \mathrm{~V}, \mathrm{SW} 25 \rightarrow$ ON and $\mathrm{V} 25=1.6 \mathrm{~V}$. Then label the non-inverted reference level potential at TP15 as VSRTN and the inverted reference level potential as VSRTNA. Next, label the non-inverted reference level potential	-	-1.8	-1.2	V
138	R SBRT adjustment range (2)	$\Delta \mathrm{V}$ SSR2	reference level potential as VSRTMA. $\begin{aligned} \Delta \text { VSSR1 }= & (\text { VSRTNA }- \text { VSRTN }) \\ & -(\text { VSGTA }- \text { VSGT }) \\ \Delta \text { VSSR2 }= & (\text { VSRTMA }- \text { VSRTM }) \\ & -(\text { VSGTA }- \text { VSGT }) \end{aligned}$	1.2	1.8	-	V
139	B SBRT adjustment range (1)	$\Delta \mathrm{V}$ SSB1	Set SW39 \rightarrow ON, V39 $=1.6 \mathrm{~V}, \mathrm{SW} 24 \rightarrow \mathrm{ON}$ and $\mathrm{V} 24=1.6 \mathrm{~V}$. Then label the non-inverted reference level potential at TP17 as VsBTN and the inverted reference level potential as VSBTNA. Next, label the non-inverted reference level potential	-	-1.8	-1.2	V
140	B SBRT adjustment range (2)	$\Delta \mathrm{V}$ SsB2	reference level potential as VsBtMA. $\begin{aligned} \Delta \text { VSSB1 }= & (\text { VSBTNA }- \text { VSBTN }) \\ & -(\text { VSGTA }- \text { VSGT }) \\ \Delta \text { VSSB2 }= & (\text { VSBTMA }- \text { VSBTM }) \\ & -(\text { VSGTA }- \text { VSGT }) \end{aligned}$	1.2	1.8	-	V
141	Reference level difference between R, G and B	$\Delta \mathrm{V}$ s	$\begin{aligned} \Delta \operatorname{Vs} \quad= & \operatorname{VSRT}(\mathrm{A})-\operatorname{VSGT}(\mathrm{A}), \\ & \operatorname{VsGT}(\mathrm{A})-\operatorname{VSBT}(\mathrm{A}), \\ & \operatorname{VSBT}(\mathrm{A})-\operatorname{VSRT}(\mathrm{A}) \end{aligned}$	-200	0	200	mV
142	Gain difference between R, G and B	$\Delta \mathrm{GRGB}$	Set V45 $=\mathrm{V}$, SW41 $\rightarrow \mathrm{ON}, \mathrm{V} 41=1.6 \mathrm{~V}$ and input SG1 (0dB) to (R IN), (G IN) and (B IN). Then label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 as VRVT, VgVT and VBVT, and the inverted output amplitudes as Vrvta, Vgita and Vbvta, respectively. Δ Grgb $=20 \log (\mathrm{VBVT} /$ VRVT $)$, 20log (VRVt/Vavt), $20 \log$ (VGVt/VbVT)	-0.8	0	0.8	dB
143	Difference between the inverted and non-inverted gain	$\Delta \mathrm{GINV}$	$\begin{aligned} & \hline \Delta \text { GINV }= 20 \log (\text { VRVT/VRVTA }), \\ & 20 \log (\text { VGVT/VGVTA) }, \\ & 20 \log (\text { VBVT/VBVTA }) \\ & \hline \end{aligned}$	-0.7	0	0.7	dB
144	Difference between the reference level and 50 IRE	$\Delta \mathrm{V}_{50}$	Set V45 = VI. Then label the non-inverted output signal reference level amplitudes at TP15, TP16 and TP17 as VsR, VsG and VSB, and the inverted output signal reference level amplitudes as VSRA, VsGA and VsBA, respectively. $\begin{aligned} \operatorname{V50I} & =\operatorname{VSR}(A)-\operatorname{VRVT}(A) / 2 \\ & =\operatorname{VsG}(A)-\operatorname{VgVt}(A) / 2 \\ & =\operatorname{VsB}(A)-\operatorname{VBVT}(A) / 2 \end{aligned}$	-150	0	150	mV
145	Gamma intermediate region gain	GGN	(See "Black Side Gamma Measurement Method".) Set V45 = VI. Then measure the minimum gain GN of the noninverted and inverted signals at TP15, TP16 and TP17. $\text { GGN = } 20 \log (G N)$	8.0	9.8	12.0	dB
146	Minimum RGB gamma black side gain	Gcbn	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}$ and $\mathrm{V} 77=1.6 \mathrm{~V}$. Then obtain the gamma gain of the non-inverted and inverted signals at TP15, TP16 and TP17.	-1.5	0	1.5	dB

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
147	Maximum RGB gamma black side gain	$\Delta \mathrm{GGBM}$	(See "Black Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} 1, \mathrm{~V} 23=1.6 \mathrm{~V}$, $\mathrm{V} 68=5.0 \mathrm{~V}$ and $\mathrm{V} 77=$ 1.6V. Then obtain the gamma gain of the non-inverted and inverted signals at TP15, TP16 and TP17.	15	18	-	dB
148	Gamma black side gain difference between R, G and B	$\Delta \mathrm{GGBT}$	(See "Black Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} 1, \mathrm{~V} 23=1.6 \mathrm{~V}$, $\mathrm{V} 68=3.0 \mathrm{~V}$ and $\mathrm{V} 77=$ 1.6V. Then label the non-inverted side gamma gain at TP15, TP16 and TP17 as Gbrt, Gbgt and Gbbt, and the inverted side gamma gain as Gbrta, Gbgta and Gbbta, respectively. $\begin{aligned} \Delta \operatorname{GGBT} & =\operatorname{GBRT}(\mathrm{A})-\operatorname{GBGT}(\mathrm{A}) \\ & =\operatorname{GBGT}(\mathrm{A})-\operatorname{GBBT}(\mathrm{A}) \\ & =\operatorname{GBBT}(\mathrm{A})-\operatorname{GBRT}(\mathrm{A}) \end{aligned}$	-1.0	0	1.0	dB
149	R gamma black side sub gain adjustment range (1)	$\Delta \mathrm{GGBR1}$	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 68=3.0 \mathrm{~V}, \mathrm{~V} 77=1.6 \mathrm{~V}$, SW69 \rightarrow ON and $\mathrm{V} 69=1.6 \mathrm{~V}$. Then measure the gamma gain at TP15, and label the non-inverted side as GBRN and the inverted	-	-4.5	-2.5	dB
150	R gamma black side sub gain adjustment range (2)	$\Delta \mathrm{GGBR2}$	$\Delta \operatorname{GGBR}_{1}=\operatorname{GbRN}(\mathrm{A})-\operatorname{GbGT}(\mathrm{A})$ Next, measure the gamma gain at TP15 with $\mathrm{V} 69=5.0 \mathrm{~V}$, and label the non-inverted side as Gbrm and the inverted side as Gbrma. $\Delta \operatorname{GGBR2}=\operatorname{GBRM}(\mathrm{A})-\operatorname{GBGT}(\mathrm{A})$	2.5	4.5	-	dB
151	B gamma black side sub gain adjustment range (1)	$\Delta \mathrm{GGBB} 1$	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 68=3.0 \mathrm{~V}, \mathrm{~V} 77=1.6 \mathrm{~V}$, $\mathrm{SW} 70 \rightarrow \mathrm{ON}$ and $\mathrm{V} 70=1.6 \mathrm{~V}$. Then measure the gamma gain at TP17, and label the non-inverted side as GbBn and the inverted	-	-4.5	-2.5	dB
152	B gamma black side sub gain adjustment range (2)	$\Delta \mathrm{GGBB2} 2$	$\Delta \operatorname{GGBB} 1=\operatorname{GBBN}(\mathrm{A})-\operatorname{GBGT}(\mathrm{A})$ Next, measure the gamma gain at TP17 with $\mathrm{V} 70=5.0 \mathrm{~V}$, and label the non-inverted side as Gbbм and the inverted side as Gbbma. $\Delta \mathrm{GGBB2}=\mathrm{GBBM}(\mathrm{~A})-\operatorname{GBGT}(\mathrm{A})$	2.5	4.5	-	dB
153	Minimum RGB gamma white side gain	Ggwn	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}$, SW4 $1 \rightarrow \mathrm{ON}, \mathrm{V} 41=$ $1.6 \mathrm{~V}, \mathrm{~V} 71=1.6 \mathrm{~V}$ and $\mathrm{V} 74=5.0 \mathrm{~V}$. Then measure the gamma gain of the non-inverted and inverted sides at TP15, TP16 and TP17.	-1.5	0	1.5	dB
154	Maximum RGB gamma white side gain	Ggwn	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}$, SW41 $\rightarrow \mathrm{ON}, \mathrm{V} 41=$ $1.6 \mathrm{~V}, \mathrm{~V} 71=5.0 \mathrm{~V}$ and $\mathrm{V} 74=5.0 \mathrm{~V}$. Then measure the gamma gain of the non-inverted and inverted sides at TP15, TP16 and TP17.	15	18	-	dB

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
155	Gamma white side gain difference between R, G and B	$\Delta \mathrm{GGWT}$	(See "White Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} 1, \mathrm{~V} 23=1.6 \mathrm{~V}, \mathrm{~V} 71=3.0 \mathrm{~V}, \mathrm{~V} 74=$ 5.0 V , SW41 $\rightarrow \mathrm{ON}$ and $\mathrm{V} 41=1.6 \mathrm{~V}$. Then label the non-inverted side gamma gain at TP15, TP16 and TP17 as Gwrt, Gwgt and GwBT, and the inverted side gamma gain as Gwrta, GwgTa and GwbTA, respectively. $\begin{aligned} \Delta \mathrm{GGWT} & =\operatorname{GwRT}(\mathrm{A})-\operatorname{GwGT}(\mathrm{A}) \\ & =\operatorname{GwGT}(\mathrm{A})-\operatorname{GwBT}(\mathrm{A}) \\ & =\operatorname{GwBT}(\mathrm{A})-\operatorname{GwRT}(\mathrm{A}) \end{aligned}$	-1.0	0	1.0	dB
156	R gamma white side sub gain adjustment range (1)	$\Delta \mathrm{GGWR1}$	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 71=3.0 \mathrm{~V}, \mathrm{~V} 74=$ $5.0 \mathrm{~V}, \mathrm{SW} 41 \rightarrow \mathrm{ON}, \mathrm{V} 41=1.6 \mathrm{~V}, \mathrm{SW} 72 \rightarrow \mathrm{ON}$ and $\mathrm{V} 72=1.6 \mathrm{~V}$. Then measure the gamma gain at TP15, and label the non-inverted side as Gwrn and the	-	-4.5	-2.5	dB
157	R gamma white side sub gain adjustment range (2)	$\Delta \mathrm{GGWR} 2$	inverted side as GwRNA. Δ GGWR1 $=$ GwRN (A) - GwGT (A) Next, measure the gamma gain at TP15 with $\mathrm{V} 72=5.0 \mathrm{~V}$, and label the non-inverted side as Gwrm and the inverted side as Gwrma. $\Delta \text { GGWR2 }=\text { GWRM (A) }-\operatorname{GWGT}(\mathrm{A})$	2.5	4.5	-	dB
158	B gamma white side sub gain adjustment range (1)	$\Delta G G W B 1$	(See "White Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} 1, \mathrm{~V} 23=1.6 \mathrm{~V}, \mathrm{~V} 71=3.0 \mathrm{~V}, \mathrm{~V} 74=$ 5.0V, SW41 \rightarrow ON, V41 = 1.6V, SW73 \rightarrow ON and $\mathrm{V} 73=1.6 \mathrm{~V}$. Then measure the gamma gain at TP17, and label the non-inverted side as GwBN and the	-	-4.5	-2.5	dB
159	B gamma white side sub gain adjustment range (2)	$\Delta G G W B 2$	inverted side as GwBNA. Δ GGWB1 = GWBN (A) - GwGT (A) Next, measure the gamma gain at TP17 with $\mathrm{V} 73=5.0 \mathrm{~V}$, and label the non-inverted side as Gwbm and the inverted side as Gwbma. $\Delta G G W B 2=\text { GwBM (A) }- \text { GwGT (A) }$	2.5	4.5	-	dB
160	Minimum RGB gamma black side breakpoint value	Pgbn	(See "Black Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} 1, \mathrm{~V} 23=1.6 \mathrm{~V}, \mathrm{~V} 68=5.0 \mathrm{~V}$ and $\mathrm{V} 77=$ 1.6 V . Then measure the gamma breakpoints of the non-inverted and inverted sides at TP15, TP16 and TP17.	-0.45	-0.15	-	V
161	Maximum RGB gamma black side breakpoint value	PGBM	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}$, V68 $=5.0 \mathrm{~V}, \mathrm{~V} 77=$ $5.0 \mathrm{~V}, \mathrm{SW} 1 \rightarrow \mathrm{ON}$ and $\mathrm{V} 1=4.0 \mathrm{~V}$. Then measure the gamma breakpoints of the non-inverted and inverted sides at TP15, TP16 and TP17.	-	-1.05	-0.75	V

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
162	Gamma black side breakpoint difference between R, G and B	$\Delta \mathrm{PGBT}$	(See "Black Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V}, \mathrm{V} 23=1.6 \mathrm{~V}, \mathrm{~V} 68=5.0 \mathrm{~V}$ and $\mathrm{V} 77=3.3 \mathrm{~V}$. Then measure the gamma breakpoints at TP15, TP16 and TP17 and label the non-inverted side as Pgbrt, Pgbgt and PgbBt, and the inverted side as Pgbrta, Pgbgta and Pgbbta, respectively. $\begin{aligned} \Delta \operatorname{PGBT} & =\operatorname{PGBRT}(\mathrm{A})-\operatorname{PGBGT}(\mathrm{A}) \\ & =\operatorname{PGBGT}(\mathrm{A})-\operatorname{PGBBT}(\mathrm{A}) \\ & =\operatorname{PGBBT}(\mathrm{A})-\operatorname{PGBRT}(\mathrm{A}) \end{aligned}$	-0.15	0	0.15	V
163	R gamma black side breakpoint sub adjustment range (1)	$\Delta \mathrm{PGBR} 1$	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 68=5.0 \mathrm{~V}, \mathrm{~V} 77=3.3 \mathrm{~V}$, SW78 $\rightarrow \mathrm{ON}$ and V78 $=1.6 \mathrm{~V}$. Then measure the gamma breakpoint at TP15, and label the non-inverted side as PGBRN and the inverted side as PGBRNA.	0.15	0.3	-	V
164	R gamma black side breakpoint sub adjustment range (2)	$\Delta \mathrm{PGBR} 2$	$\Delta \mathrm{PGBR1}=\operatorname{PGBRN}(\mathrm{A})-\operatorname{PGBGT}(\mathrm{A})$ Next, measure the gamma breakpoint at TP15 with $\mathrm{V} 78=5.0 \mathrm{~V}$, SW1 $\rightarrow \mathrm{ON}$ and $\mathrm{V} 1=4.0 \mathrm{~V}$, and label the non-inverted side as PGBRM and the inverted side as Pgbma. Δ PGBR2 $=\operatorname{PGBRM}(A)-\operatorname{PGBGT}(A)$	-	-0.3	-0.15	V
165	B gamma black side breakpoint sub adjustment range (1)	$\Delta \mathrm{PGBB} 1$	(See "Black Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 68=5.0 \mathrm{~V}, \mathrm{~V} 77=3.3 \mathrm{~V}$, SW79 \rightarrow ON and V79 $=1.6 \mathrm{~V}$. Then measure the gamma breakpoint at TP17, and label the non-inverted side as PGBBN and the inverted side as PGBBNA.	0.15	0.3	-	V
166	B gamma black side breakpoint sub adjustment range (2)	$\Delta \mathrm{PGBB} 2$	$\Delta \mathrm{PGBB} 1=\operatorname{PGBBN}(\mathrm{A})-\mathrm{PGBGT}(\mathrm{A})$ Next, measure the gamma breakpoint at TP17 with $\mathrm{V} 79=5.0 \mathrm{~V}$, SW $1 \rightarrow \mathrm{ON}$ and $\mathrm{V} 1=4.0 \mathrm{~V}$, and label the non-inverted side as PGBBM and the inverted side as Pgbbma. $\Delta \mathrm{PGBB2}=\mathrm{PGBBM}(\mathrm{A})-\operatorname{PGBGT}(\mathrm{A})$	-	-0.3	-0.15	V
167	Minimum RGB gamma white side breakpoint value	Pgwn	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 71=5.0 \mathrm{~V}, \mathrm{~V} 74=5.0 \mathrm{~V}$, SW41 \rightarrow ON and V41 $=1.6 \mathrm{~V}$. Then measure the gamma breakpoints of the noninverted and inverted sides at TP15, TP16 and TP17.	-	-0.35	-0.05	V
168	Maximum RGB gamma white side breakpoint value	Pgwm	(See "White Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} \mathrm{V}, \mathrm{V} 23=1.6 \mathrm{~V}, \mathrm{~V} 71=5.0 \mathrm{~V}, \mathrm{~V} 74=1.6 \mathrm{~V}$, $\mathrm{SW} 1 \rightarrow \mathrm{ON}, \mathrm{V} 1=2.3 \mathrm{~V}, \mathrm{SW} 41 \rightarrow \mathrm{ON}$ and $\mathrm{V} 41=$ 1.6V. Then measure the gamma breakpoints of the noninverted and inverted sides at TP15, TP16 and TP17.	0.75	1.20	-	V
169	Gamma white side breakpoint difference between R, G and B	$\Delta \mathrm{PGWT}$	(See "White Side Gamma Measurement Method".) Set $\mathrm{V} 45=\mathrm{V} \mathrm{V}, \mathrm{V} 23=1.6 \mathrm{~V}, \mathrm{~V} 71=5.0 \mathrm{~V}, \mathrm{~V} 74=3.3 \mathrm{~V}$, SW41 \rightarrow ON and V41 $=1.6 \mathrm{~V}$. Then measure the gamma breakpoints at TP15, TP16 and TP17 and label the non-inverted sides as PGWRT, PGWGt and PGWBt, and the inverted sides as Pgwrta, Pgwgta and Pgwbta, respectively. $\begin{aligned} \Delta \mathrm{PGWT} & =\operatorname{PGWRT}(\mathrm{A})-\operatorname{PGWGT}(\mathrm{A}) \\ & =\operatorname{PGWGT}(\mathrm{A})-\operatorname{PGWBT}(\mathrm{A}) \\ & =\operatorname{PGWBT}(\mathrm{A})-\operatorname{PGWRT}(\mathrm{A}) \end{aligned}$	-0.15	0	0.15	V

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
170	R gamma white side breakpoint sub adjustment range (1)	$\Delta \mathrm{PGWR} 1$	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 71=5.0 \mathrm{~V}, \mathrm{~V} 74=3.3 \mathrm{~V}$, $\mathrm{SW} 41 \rightarrow \mathrm{ON}$ and $\mathrm{V} 41=1.6 \mathrm{~V}$. Then measure the gamma breakpoint at TP16, and label the non-inverted side as PgwGt and the inverted side as PGwGTA. Next, measure the gamma breakpoint at TP15 with SW75 $\rightarrow \mathrm{ON}$ and $\mathrm{V} 75=5.0$, and label the non-	-	-0.3	-0.15	V
171	R gamma white side breakpoint sub adjustment range (2)	$\Delta \mathrm{PGWR} 2$	inverted side as Pgwrn and the inverted side as Pgwrna. Δ PGWR1 $=$ PGWRN (A) - PGWGT (A) Next, measure the gamma breakpoint at TP15 with $\mathrm{V} 75=1.6 \mathrm{~V}, \mathrm{SW} 1 \rightarrow \mathrm{ON}$ and $\mathrm{V} 1=2.3 \mathrm{~V}$, and label the non-inverted side as PGWRM and the inverted side as Pgwrma. $\Delta \mathrm{PGWR2}=\mathrm{PGWRM}(\mathrm{~A})-\mathrm{PGWGT}(\mathrm{~A})$	0.15	0.3	-	V
172	B gamma white side breakpoint sub adjustment range (1)	$\Delta \mathrm{PGWB} 1$	(See "White Side Gamma Measurement Method".) Set V45 = VI, V23 $=1.6 \mathrm{~V}, \mathrm{~V} 71=5.0 \mathrm{~V}, \mathrm{~V} 74=3.3 \mathrm{~V}$, SW41 \rightarrow ON, V41 = 1.6V, SW76 \rightarrow ON and $\mathrm{V} 76=5.0 \mathrm{~V}$. Then measure the gamma breakpoint at TP17, and label the non-inverted side as PGWBN and the	-	-0.3	-0.15	V
173	B gamma white side breakpoint sub adjustment range (2)	$\Delta \mathrm{PGWB} 2$	Δ PGWB1 $=\operatorname{PGWBN}(\mathrm{A})-\operatorname{PGWGT}(\mathrm{A})$ Next, measure the gamma breakpoint at TP17 with $\mathrm{V} 75=1.6 \mathrm{~V}, \mathrm{SW} 1 \rightarrow \mathrm{ON}$ and $\mathrm{V} 1=2.3 \mathrm{~V}$, and set the non-inverted side as PGWBM and the inverted side as Pgwbma. $\Delta \mathrm{PGWB2}=\mathrm{PGWBM}(\mathrm{A})-\operatorname{PGWGT}(\mathrm{A})$	0.15	0.3	-	V
174	WHT LIM standard voltage value	Vwt	Set V45 $=5.0 \mathrm{~V}, \mathrm{~V} 42=0 \mathrm{~V}, \mathrm{~V} 54=0 \mathrm{~V}$ and input SG1 (OdB) to (TEST IN). Label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 as Vwrlt, Vwglt and VwBLT, and the inverted output amplitudes as Vwrlta, Vwglta and Vwblta, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with	1.7	2.0	2.3	V
175	WHT LIM adjustment range (1)	$\Delta \mathrm{V}$ w1	SW41 \rightarrow ON and V41 $=5.0 \mathrm{~V}$ as VwRLn, VwgLn and VWBLN, and the inverted output amplitudes as Vwrina, Vwglna and Vwblna, respectively. Next, label the non-inverted output amplitudes (black to white) at TP15, TP16 and TP17 with V41 $=1.6 \mathrm{~V}$ as VwrLm, Vwglm and Vwblm, and the inverted output amplitudes as VwrLma, Vwglma and VwBLMA, respectively.	-	-1.7	-1.3	V
176	WHT LIM adjustment range (2)	$\Delta \mathrm{V}$ w2		2.4	2.8	-	V

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
177	BLK LIM standard voltage value (non-inverted side)	Vblt	Set $\mathrm{V} 23=1.6 \mathrm{~V}$ and $\mathrm{V} 37=2.8 \mathrm{~V}$. Then label the DC voltages at TP15, TP16 and TP17 as VCR1, VcG1 and VcB1, respectively. Next, set V23 $=5.0 \mathrm{~V}$, SW26 \rightarrow (b), SW27 \rightarrow (b), SW28 \rightarrow (b), V26 $=7.0 \mathrm{~V}, \mathrm{~V} 27=7.0 \mathrm{~V}$ and $\mathrm{V} 28=$ 7.0 V , and then label the non-inverted limiter levels at TP15, TP16 and TP17 as Vbrlt, VbGlt and VbbLT, and the inverted limiter levels as VbrLTA,	4.2	4.8	5.4	V
178	BLK LIM standard voltage value (inverted side)	Vblta	Vbglta and Vbblta, respectively. Next, label the non-inverted limiter levels at TP15, TP16 and TP17 with SW39 \rightarrow ON and V39 $=$ 1.6 V as Vbrlm, Vbglm and Vbblm, and the inverted limiter levels as Vbrlma, Vbglma and VBbLMA, respectively. Next, label the non-inverted limiter levels at TP15, TP16 and TP17 with V39 $=5.0 \mathrm{~V}$ as Vbrin, Vbgln	4.2	4.8	5.4	V
179	BLK LIM adjustment range (1) (non-inverted side)	$\Delta \mathrm{VBL1}$	and VbbLn, and the inverted limiter levels as Vbrlna, Vbglna and Vbblna, respectively. $\begin{aligned} \text { VBLT } & =\text { VCR1 }- \text { VbrLt } \\ & =\text { VCG1 }- \text { VbGLT } \\ & =\text { VCB1 }- \text { VbBLT } \\ \text { VBLTA } & =\text { VBRLTA }- \text { VCR1 } \\ & =\text { VBGLTA }- \text { VCG1 } \\ & =\text { VBBLTA }- \text { VcB1 } \end{aligned}$	0.7	1.2	-	V
180	BLK LIM adjustment range (2) (non-inverted side)	$\Delta \mathrm{VBL2}$	$\begin{aligned} \Delta V B L 1= & (\text { VCR1 }- \text { VBRLM }) \\ & -(\text { VCR1 }- \text { VBRLT }) \\ = & (\text { VCG1 }- \text { VBGLM }) \\ & -(\text { VCG1 }- \text { VBGLT }) \\ = & (\text { VCB1 }- \text { VBBLM }) \\ & -(\text { VCB1 }- \text { VBBLT }) \\ \Delta V B L 2= & (\text { VCR1 }- \text { VBRLN }) \\ & -(\text { VCR1 }- \text { VBRLT }) \end{aligned}$	-	-2.7	-2.2	V
181	BLK LIM adjustment range (3) (inverted side)	$\Delta \mathrm{VBL} 3$	$\begin{aligned} = & (\text { VCG1 }- \text { VbGLN }) \\ & -(\text { VCG1 }- \text { VBGLT }) \\ = & (\text { VCB1 }- \text { VbBLN }) \\ & -(\text { VCB1 }- \text { VBBLT }) \\ \Delta \text { VbL3 }= & (\text { VBRLMA }- \text { VCR1 }) \\ & -(\text { VBRLTA }- \text { VCR1 }) \\ = & (\text { VBGLMA }- \text { VCG1 }) \\ & -(\text { VbGLTA }- \text { VcG1 }) \end{aligned}$	-0.5	0	0.5	V
182	BLK LIM adjustment range (4) (inverted side)	$\Delta \mathrm{VBL4}$		-	-2.7	-2.2	V
183	RGB output DC voltage	Vcrgb	Set $\mathrm{V} 42=0 \mathrm{~V}$ and $\mathrm{V} 23=2.1 \mathrm{~V}$. Then label the DC voltages at TP15, TP16 and TP17 as Vcrt, Vcgt and Vcbt, respectively. Vcrgb = Vcrt, Vcgt, Vcbt	6.35	6.50	6.65	V
184	SID output DC voltage	Vcsid	Set $\mathrm{V} 31=1.6 \mathrm{~V}$, $\mathrm{SW} 30 \rightarrow \mathrm{ON}$ and $\mathrm{V} 30=1.6 \mathrm{~V}$. Then measure the DC voltage at TP13.	6.35	6.50	6.65	V

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
185	DC voltage difference between RGB and SID outputs	$\Delta \mathrm{V}$ csrgb	Set V42 $=0 \mathrm{~V}, \mathrm{~V} 31=1.6 \mathrm{~V}$, $\mathrm{SW} 30 \rightarrow \mathrm{ON}$, $\mathrm{V} 30=1.6 \mathrm{~V}$ and $\mathrm{V} 37=2.8 \mathrm{~V}$. Then measure the DC voltages at TP13, TP15, TP16 and TP17, and level these voltages as Vcs2, Vcr2, VcG2 and Vcb2, respectively. $\begin{aligned} \Delta \mathrm{VCSRGB}= & \text { VCS2 }- \text { VCR2, VCS2 }- \text { VCG2, } \\ & \text { VCS2 }- \text { VCB2 } \\ = & \text { VCR2 }- \text { VCG2, VCR2 }- \text { VCB2, } \\ & \text { VCG2 }- \text { VCB2 } \end{aligned}$	-150	0	150	mV
186	Minimum SIG CENT adjustment voltage	Vc1	Set V42 $=0 \mathrm{~V}$, V37 $=5.0 \mathrm{~V}$, SW37 \rightarrow ON. Then measure the DC voltages at TP13, TP15, TP16 and TP17.	-	4.7	5.3	V
187	Maximum SIG CENT adjustment voltage	Vc2	Set V42 $=0 \mathrm{~V}$, V37 $=1.6 \mathrm{~V}$, SW37 \rightarrow ON. Then measure the DC voltages at TP15, TP16 and TP17.	7.7	8.3	-	V
188	DC voltage difference between VCOM OUT and RGB output	$\Delta \mathrm{Vcom}$	$\begin{aligned} \Delta \mathrm{VCOM} & =\mathrm{VCRT}-\mathrm{VCOM} \\ & =\mathrm{VCGT}-\mathrm{VCOM} \\ & =\mathrm{VCBT}-\mathrm{VCOM} \end{aligned}$	100	300	500	mV
189	VCOM control range (1)	$\Delta \mathrm{V}$ com1	Set SW36 \rightarrow ON and V36 $=5.0 \mathrm{~V}$. Then label the voltage at TP38 as Vcom1. $\begin{aligned} \Delta \mathrm{VCOM} 1 & =\mathrm{VCRT}-\mathrm{VCOM} 1 \\ & =\mathrm{VCGT}-\mathrm{V} \text { COM } 1 \\ & =\mathrm{VCBT}-\mathrm{V} \text { COM } 1 \end{aligned}$		-1.9	-1.6	V
190	VCOM control range (2)	$\Delta \mathrm{V}$ сом2	Set SW36 \rightarrow ON and V36 $=1.6 \mathrm{~V}$. Then label the voltage at TP38 as Vсом2. $\begin{aligned} \Delta \mathrm{VCOM} 2 & =\mathrm{VCRT}-\mathrm{VCOM} 2 \\ & =\mathrm{VCGT}-\mathrm{VCOM} 2 \\ & =\mathrm{VCBT}-\mathrm{VCOM} 2 \end{aligned}$	2.1	2.4		V
191	SID OUT amplitude	VSID	Set V31 $=1.6 \mathrm{~V}$. Then measure the output amplitude at TP13.	8.3	9.3	10.3	Vp-p
192	Maximum SID CTR control voltage	Vsmax	Set V31 $=1.6 \mathrm{~V}$, SW30 $\rightarrow \mathrm{ON}, \mathrm{V} 30=5.0 \mathrm{~V}$ and $V c c 2=13 \mathrm{~V}$. Then measure the output amplitude at TP13.	10	11	-	Vp-p
193	Minimum SID CTR control voltage	Vsmin	Set V31 $=1.6 \mathrm{~V}$, SW30 $\rightarrow \mathrm{ON}, \mathrm{V} 30=1.6 \mathrm{~V}$ and $V C C 2=13 V$. Then measure the output amplitude at TP13.	-	5.0	6.5	Vp-p
194	Maximum PRG CTR control voltage	VPrgm	Set V31 $=5.0 \mathrm{~V}$. Then measure the amplitude of the PRG section using the output waveform at TP13. SG5 \square \square	2.0	3.2	-	Vp-p

No.	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
195	Minimum PRG CTR control voltage	VPRGN	Set V31 $=1.6 \mathrm{~V}$. Then measure the amplitude of the PRG section using the output waveform at TP13.	-	0	0.4	Vp-p
196	Frequency response (1) (RGB input - RGB output)	$f \mathrm{fg}$ b	Frequency response from (RIN), (GIN) and (B IN) to TP15, TP16 and TP17 (frequency which goes to -3 dB with respect to 100 kHz)	-	18	-	MHz
197	Frequency response (3) (RGB input - γ)	$f \gamma$	Frequency response from (RIN), (GIN) and (B IN) to the sample-and-hold circuit input (frequency which goes to -3 dB with respect to 100 kHz)	20	25	-	MHz
198	Slew rate (RGB input - RGB output)	Rspgb	Input SG6 to (RIN), (GIN) and (BIN). Then adjust V45 so that the output amplitude (black to white) at TP16 is 3 V . Measure the slew rate from the 10 to 90% rise and fall time of TP15, TP16 and TP17.	60	100	-	V/ $/ \mathrm{s}$
199	Input dynamic range	VDIN	Set SW41 \rightarrow ON, V41 $=1.6 \mathrm{~V}$ and input SG1 (variable amplitude) to ($\mathrm{R} \operatorname{IN}$), (G IN) and (B IN). Then label the amplitude of the 1 st, 5 th and 10th steps as b1, b5 and b10, respectively, using the non-inverted output waveform at TP15, TP16 and TP17. The input dynamic range is defined as the minimum value for the input amplitude (black to white) at which b1/b5 <0.8 or b10/b5 < 0.8 .	0.8	1.1	-	Vp-p
200	Sample-and-hold circuit droop rate	Rdlp	Set V45 = VI and input SG7 to (SH1), (SH2) and (SH3). Then measure the droop rate at TP15, TP16 and TP17. Next, input SG7 to (SH4). Then measure the droop rate of TP15, TP16 and TP17.	-	-	40	$\mathrm{mV} / \mu \mathrm{s}$
201	GAM OUT reference voltage amplitude	VGS	Measure the reference signal voltage amplitude of TP7.	0.15	0.22	0.29	Vp-p
202	GAM OUT GAIN (Maximum GAM gain)	Gg	Input SG1 to (G IN). Then measure the output amplitude (black to white) of TP7, and label it as VG.	-5.2	-4.2	-3.2	dB

Note) The symbol (A) in the Measurement conditions inscription indicates that the measurement values for both the inverted and non-inverted sides are used.

(Example)

$\left.20 \log \left(\mathrm{~V}_{\text {RSM }}(\mathrm{A}) / \mathrm{VRST}_{\text {(}} \mathrm{A}\right)\right)$ means both
$20 \log \left(V_{r S m} / V_{\text {RSt }}\right)$ and
$20 \log$ (Vrsma/Vrsta).
In this example, Vrsm and Vrst are non-inverted side measurement values and Vrsma and Vrsta are inverted side measurement values.

Black Side Gamma Measurement Method

Measure the output voltages y_{1} to y_{10} which correspond to the input voltages a_{1} to a_{10} using SG8 as the input signal. (Measure the voltage from the reference level. Label the white side from the reference level as positive, and the black side as negative.)
Select the two points where $\left|y_{n-1} y_{n-1}\right|(n=2$ to 10$)$ is a maximum, and label these points y_{k} and y_{k-1}. Also, label the input voltages which correspond to y_{k} and $y_{k-1} a^{2} a_{k}$ and a_{k-1}, respectively.

Next, measure the output voltages y 1 to y 10 which correspond to the input voltages a_{1} to a 10 using SG9 as the input signal.
Select the two points where $\left|y_{n}-y_{n-1}\right|(n=2$ to 10$)$ is a maximum, and label these points y_{n} and y_{n-1}. Also, label the input voltages which correspond to yh_{h} and $\mathrm{yh}_{\mathrm{h}-1}$ as and and $\mathrm{a}_{\mathrm{h}}-1$, respectively.

From the above:
Maximum gain $G M=(y k-y k-1) /(a k-a k-1)$
Minimum gain $G N=(y h-y h-1) /(a h-a h-1)$

The black side gamma gain is defined as the ratio of the maximum gain to the minimum gain. In other words:
Gamma gain $=20 \log (G M / G N)$

The gamma breakpoint is defined as the intersection between the straight line passing through points (ak, yk) and (a_{k-1}, y_{k-1}) and the straight line passing through points ($a n, y h$) and ($a n-1, y_{n-1}$). In other words:

Gamma breakpoint $=\left(\mathrm{GM} * \mathrm{GN} *\left(\mathrm{ak}_{\mathrm{k}}-\mathrm{ah}_{\mathrm{h}}\right)-\mathrm{GN} * \mathrm{yk}_{\mathrm{k}}+\mathrm{GM} * \mathrm{yh}\right) /(\mathrm{GM}-\mathrm{GN})$

RGB output waveform (SG8)

RGB output waveform (SG9)

White Side Gamma Measurement Method

Measure the output voltages y_{1} to y 10 which correspond to the input voltages a_{1} to a_{10} using SG9 as the input signal. (Measure the voltage from the reference level. Label the white side from the reference level as positive, and the black side as negative.)
Select the two points where $\left|y_{n}-y_{n-1}\right|(n=2$ to 10$)$ is a maximum, and label these points y_{k} and y_{k-1}. Also, label the input voltages which correspond to y_{k} and $\mathrm{y}_{\mathrm{k}-1} \mathrm{as}_{\mathrm{a}} \mathrm{a}_{\mathrm{k}}$ and $\mathrm{a}_{\mathrm{k}}-1$, respectively.

Next, measure the output voltages y_{1} to y 10 which correspond to the input voltages a_{1} to a_{10} using SG8 as the input signal.
Select the two points where $\left|y_{n}-y_{n-1}\right|(n=2$ to 10$)$ is a maximum, and label these points y_{h} and y_{h-1}. Also, label the input voltages which correspond to yh_{h} and $\mathrm{yh}_{\mathrm{h}}-1$ as and and $\mathrm{an}-1$, respectively.

From the above:
Maximum gain $G M=(y k-y k-1) /(a k-a k-1)$
Minimum gain $G N=(y h-y h-1) /(a h-a h-1)$

The white side gamma gain is defined as the ratio of the maximum gain to the minimum gain. In other words:
Gamma gain $=20 \log (G M / G N)$

The gamma breakpoint is defined as the intersection between the straight line passing through points (ak, yk)

$$
\text { Gamma breakpoint }=\left(\mathrm{GM} * \mathrm{GN} *\left(\mathrm{a}_{\mathrm{k}}-\mathrm{ah}_{\mathrm{h}}\right)-\mathrm{GN} * \mathrm{yk}_{\mathrm{k}}+\mathrm{GM} * \mathrm{yh}\right) /(\mathrm{GM}-\mathrm{GN})
$$

RGB output waveform (SG8)

RGB output waveform (SG9)

Input Waveforms

Electrical Characteristics Measurement Circuit

Description of Operation

Reference signal

The reference level is inserted into the RGB signal by inputting the XCLP2 signal shown below during the RGB input signal pedestal level interval. Gamma compensation and clamping operation are performed based on this level.

Bright adjustment

The position of the RGB signal relative to the reference level changes according to the voltage applied to RGB MBRT (Pin 1). Bright can be controlled without changing the γ characteristics to the panel because the input bias is changed with the breakpoint for output kept constant.

Gamma compensation

The gamma compensation curve establishes the gain change points (breakpoints) on both the black and white sides from the reference level. The black and white side gains and the black and white side gain change points can each be adjusted independently.

Sample-and-hold, gain control and pedestal clamp

Since sample-and-hold circuits are established in the R, G and B lines and each of these circuits is operated by an independent pulse, the delay can be set freely. In addition, the pulse leak is canceled by establishing a sample-and-hold circuit in the clamp loop and inputting the differential input of the gain control circuit.

RGB inversion amplifier

The polarity of the RGB output is inverted according to the FRP pulse. The relationship between input and output is as shown in the figure below.

SID output

The CXA1853Q outputs a side black signal for 4:3/16:9 aspect conversion. The black level is adjusted by the SID CTR pin. In addition, the PRG level can be set in part of the side black signal by inputting the PRG pulse. The PRG level is adjusted by the PRG CTR pin. The relationship between each input and output is as shown in the figure below.

Signal center control

The RGB and SID output center voltages are adjusted by the SIG CENT CTR (Pin 37).
When SIG CENT CTR is preset, the output pin center voltage goes to Vcc2/2.

Output clamp

The average value of each RGB and SID output signal is detected with external RC circuits and input to the RGB CLP and SID CLP pins. Then the center voltage offsets among R, G, B and SID outputs are reduced by feedback which equalizes these detected values and the signal center voltage set by the SIG CENT CTR pin.

Notes on Operation

1) $R \operatorname{IN}(\operatorname{Pin} 9), G I N(\operatorname{Pin} 10), B \operatorname{IN}(\operatorname{Pin} 11)$ input signal impedance

An external capacitor is used as the hold capacitor for the clamp at the input of this IC. Therefore, the input signal impedance must be sufficiently low (75Ω or less) and the external capacitor must have a small leak current.
2) Clamp hold capacitors (Pins 51 to 53 and 65 to 67)

The external capacitors connected to these pins must have a small leak current.
3) R, G, B, SID OUT load capacitance

The output signal will tend to oscillate if the R, G, B and SID OUT load capacitance increases. Be sure to insert a 100 to 220Ω resistor in series to these output pins, and design to keep the load capacitance from exceeding 30 pF .
4) External capacitor at the output

The leak current absolute value and tolerance for the R, G, B and SID OUT average value detecting capacitors should be small.
Note that if there is an offset in the leak current between R, G and B, offset voltage is also generated between R, G and B in the external resistor, which causes a $D C$ offset of the output signal.

5) GND and power supply pins

Pins 12, 22, 34, 48, 55 and 64 (GND) should be set to the minimum identical potential applied to the IC, and should not be left open. In addition, the potential at Pins $8,18,50$ and 62 should be the same.

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same

Example of Representative Characteristics

RGB MBRT adjustment range
R MBRT, B MBRT adjustment range

WHT LIM adjustment range

BLK LIM adjustment range

R gamma white side breakpoint sub adjustment range

Signal center adjustment range

PRG level control range

Package Outline Unit: mm

