VTR RF Modulator

Description

CXA1122AP is a VTR RF madulator for the VHF band, and is used to convert frequencies of audio signals and video signals.
This modulator consists of circuits such as video clamp, white clipping, a carrier oscillator, video modulator, audio FM modulator, frequency/channel switch, and entenna switch driver.

Features

- Operates with low voltage and low consumption power. $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Icc}=17.5 \mathrm{~mA}$, lcont $=20$ to 25 mA)
- Low radiation and harmonic products.
- Provided with few external devices.
- Permits two channels in the VHF band.
- Provided with a built-in regulator and is resistant to power source changes.
- Allows video input of $0.5 \mathrm{Vp}-\mathrm{p}$ and various uses.
- Supports a one-mixer system to simplify the RF unit design.
- Permits the signal ratio of video to audio to be adjusted with an external capacitor.
- Provided with a carrier-off SW function for boss audio.
- Has a built-in antenna switch driver.
- Has a wide oscillation margin for a SAW (Surface Acoustic Wave) resonator.

Package Outline
Unit: mm
16 pin DIP (Plastic)

DIP-16P-121

Absolute Maximum Ratings ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

- Supply voltage Vcc 12 V
- Operating Topr -20 to $+75{ }^{\circ} \mathrm{C}$ temperature
- Storage Tstg -55 to $+150{ }^{\circ} \mathrm{C}$ temperature
- Allowable power PD 550 mW dissipation
Recommended Operating Condition
- Supply voltage Vcc 4.4 to 9.3 V

Structure

Bipolar silicon monolithic IC

Block Diagram

-1-
SONY reserves the right to change products and specifications without notice.

Pin Description and Equivalent Circuits

Electrical Characteristics 1
(See the Electrical Characteristics Test Circuit) $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$

-3-

*Classifications

Marking	Audio FM modulstion sensitivity (kHz/mV)
A1122AP-3	0.665 to 0.577
A1122AP.1	0.595 to 0.515
A1122AP-2	0.533 to 0.445

Electrical Characteristics 2 (Design security items: This parameter is not 100% tested.)

1. Video S / N	Min. 50 dB Typ. 58 dB
2. Video amplitude frequency characteristic	Within $\pm 1 \mathrm{~dB}$ for 0.5 to 5 MHz
(based on 1 MHz)	Audio amplitude frequency characteristic (based on 1 kHz)

Note) * 1. Measure the Vo output level using the spectrum analyzer with a 50Ω input impedance and convert measured value $V o$ into decibels (dBm) using the following expression: Output $(\mathrm{dB} \mu)=$ Vo $(\mathrm{dBm})+113$
*2. The difference in image modulation depth between the maximum modulation depth at an input of $0.5 \mathrm{Vp}-\mathrm{p}$ and at an input of $1.0 \mathrm{Vp}-\mathrm{p}$.
*3. Directly-read value (dB) of the component ratio of the 920 kHz beat to the video carrier level measured with a spectrum analyzer
*4. Measured with the standard-type demodulator after demodulation.
*5. fc +2 MHz or $\mathrm{fc}+3 \mathrm{MHz}$ level to the Vo carrier (fc) level
*6. Adjust fs to 4.500 MHz with $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
*7. A $15 \mathrm{k} \Omega$ resistor is added in series for pre-emphasis so that a better match can be obtained between audio modulation sensitivity classifications.
*8. Adjust the V 2 level so that the FM deviation is $\pm 15 \mathrm{kHz}$ and measure the total harmonic distortion after demodulating Vo with the standard-type demodulator.

Input Waveforms

WHITE signal

STAIR STEP signal
APL 50\% subcarrier 20 IRE

Electrical Characteristics Test Circuit

Application Circuit

Video modulation depth vs. Supply voltage

Video to audio ratio vs. Supply voltage

ANT SW driver load vs. Voltage characteristic

Inter-carrier change vs. Supply voltage

920 kHz beat vs. Supply voltage

Techtronics AA501
Supply ripple characteristics : DISTORTION ANALYZER
Rms measurement

