CXA1785AR

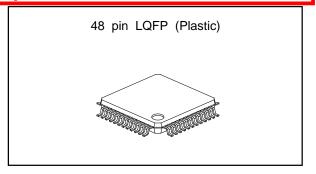
RGB Decoder/Driver

For the availability of this product, please contact the sales office.

Description

The CXA1785AR is an RGB decoder/driver designed to drive LCD panels. This IC converts composite video signals, Y/C signals and Y/color difference signals into RGB signals used for driving LCDs.

Features


- Both NTSC/PAL compatible
- Supports composite inputs, Y/C inputs and Y/color difference input
- Band pass filter, trap and delay line
- Sharpness function
- γ compensation circuit
- R, B output delay time adjustment circuit
- Polarity reverse circuit

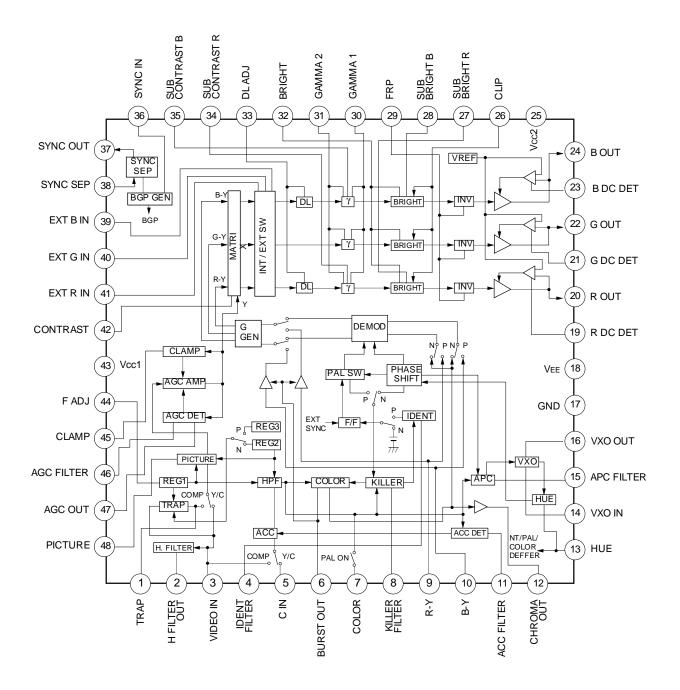
Applications

- Color liquid crystal viewfinders
- · Liquid crystal projectors
- Industrial monitors

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25°C)


• Supply voltage \	/cc1-GND	6	V
• Supply voltage	VCC2-VEE	15	V
 Supply voltage 	GND-VEE	10	V
 Input pin voltage 	VIN	Vcc1	V
Operating temperature	e Topr	-30 to +85	${}^{\circ}\! \mathbb{C}$
• Storage temperature	Tstg	-55 to +150	${}^{\circ}\! \mathbb{C}$
• Allowable power dissi	pation		
	PD	560	mW

Operating Conditions

 Supply voltage 	Vcc1-GND	4.25 to 5.25	V
 Supply voltage 	Vcc2-GND	4.25 to 14.0	V
 Supply voltage 	VCC2-VEE	11.25 to 14.0	V
 Supply voltage 	VEE-GND	-8.75 to 0	V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Description

(The pin voltage is Vcc1 = 4.5 V)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
1	TRAP	2.0V	Vcc1 VEE GND	Trap connection. Leave this pin open other than when composite video input is selected.
2	H FILTER OUT		Vcc1 GND	Outputs the video signal to be input to the sync separation circuit.
3	VIDEO IN	2.25V	Vcc1 3 VEE GND	Composite video signal input (Y signal when using Y/C input and Y/color difference input). The standard input level is 0.5 VP-P (from sync tip to 100 % white).
4	IDENT FILTER		Vcc1 4 VEE GND	IDENT detection filter connection. Leave this pin open other than when PAL mode is selected.
5	C IN	2.5V	Vcc1 S VEE GND	Chroma signal input when using Y/C input. Composite video signal input is supported when this pin is connected to GND. Leave this pin open when Y/color difference input. The standard input level is 0.15 VP-P (burst).

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
6	COLOR		Vcc1 GND	Color adjustment. The amplitude of color difference signal is adjusted when Y/color difference input.
7	BURST OUT	3.2V	Vcc1 7 VEE GND	Burst cleaning coil is connected for PAL. Leave this pin open other than when PAL mode is selected.
8	KILLER FILTER		VCC1 8 WEE GND	Killer detection filter is connected. Leave this pin open other than when Y/color difference input is selected.
9	R–Y	1.9V	Vcc1	Color difference demodulation circuit inputs. Leave this pin open for NTSC. Color difference signal is input when
10	B–Y	1.9V	10 VEE GND	Y/color difference input. In this case, input is pedestal clamped by using external coupling capacitor.
11	ACC FILTER		Vcc1 VEE	ACC detection filter is connected. Leave this pin open for Y/color difference input.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
12	CHROMA OUT	2.3V	Vcc1 12 VEE GND	Color adjusted and burst taken out chroma signal is output.
13	HUE		VCC1 13 VEE GND	Color phase adjustment pin. Also doubles as the NTSC, PAL or Y/color difference switch. PAL is selected when this pin is connected to GND; Y/color difference is selected when this pin is connected to Vcc1.
14	VXO IN	3.9V	Vcc1 VEE GND	VXO input. Leave this pin open for Y/color difference input.
15	APC FILTER		Vcc1 VEE GND	APC detection filter connection. Leave this pin open for Y/color difference input.
16	VXO OUT	2.7V	Vcc1 16 VEE GND	VXO output. Leave this pin open for Y/color difference input.
17	GND			Ground.
18	VEE			Minimum electric potential connection.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
21 23	R DC DET G DC DET	Vac2 : Var	Vcc1 19 21 VEE GND	Smoothing capacitor connection for the feedback circuit of RGB output DC level control. Use a low-leakage capacitor because this pin has high impedance.
20	R OUT	Vcc2+VEE 2	Vcc2	RGB primary color signal output.
22	G OUT		20 *	
24	B OUT		(22) (24) VEE	
25	Vcc2			Power supply connection for RGB output.
26	CLIP	2.3V	Vcc1 W GND	Sets the RGB output amplitude (black-black) clip level. This pin is preset internally.
27	SUB BRIGHT R	2.2V	Vcc1	Fine adjustment for R and B signal brightness. Functions with the γ compensation curve. This pin is preset internally.
28	SUB BRIGHT B	2.2V	VEE GND	
29	FRP		Vcc1 29 VEE GND	Polarity reverse timing pulse input for RGB output. Reversed when low; non-reversed when high.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
30	GAMMA1		Vcc1 30 VEE GND	Adjusts voltage gain change point γ1. Output Input
31	GAMMA2	2.25V	Vcc1 31 VEE GND	Adjusts voltage gain change point $\gamma 2$ and the peak limiter that operates by Vw $\gamma 2$ above $\gamma 2$. This pin is preset internally. Output Peak limiter Vw $\gamma 2$ Input
32	BRIGHT		Vcc1 32 VEE GND	RGB output brightness adjustment. Does not function with the gamma compensation curve.
33	DL ADJ	1.2V	Vcc1 VEE GND	Adjusts delay time of R and B output for G output. The delay time is adjusted by changing the resistance value between this pin and GND. The B output delay time is twice the R output delay time. Connecting this pin to Vcc turns off the R output and B output delay circuits.
35	SUB CONTRAST R SUB CONTRAST B	2.25V	Vcc1	Fine adjustment for R and B signal contrast. This pin is preset internally.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
36	SYNC IN		VCC1 VEE GND	High level input when synchronized; low level at all other times. The rising edge of the input pulse must precede the falling edge of the SYNC OUT pulse. For PAL, the internal flip flop switches at the rising edge of the input pulse.
37	SYNC OUT		Vcc1 37 VEE GND	Outputs the sync signal separated by the sync separation circuit. High level when synchronized and at low level in all other cases. This pin is of an open collector output. The high level for the output should be VEE + 15 V or less.
38	SYNC SEP	1.8V	Vcc1 GND	Sync separation circuit input. Input the H FILTER output signal.
39	EXT B IN		Vcc1 †	External digital signal input. There are two threshold values: VTH1 (approximately
40	EXT G IN		39 40	1.2 V) and VTH2 (approximately 2.2 V). When one of the RGB signals exceeds
41	EXT R IN		VEE GND	VTH1, all of the RGB outputs go to black level; when an input exceeds VTH2, only the corresponding output goes to white level.
42	CONTRAST		Vcc1 GND	Adjusts RGB output contrast.

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
43	Vcc1	-		Power supply connection.
44	F ADJ	1.2V	Vcc1 44 VEE GND	Connect a resistance between this pin and GND; the outflow current value adjusts the internal filters. Connect 18 kΩ for both NTSC and PAL. The following conditions apply to the resistance connected: Allowable difference in resistance: ±2 % Temperature characteristics: ±200 ppm
45	CLAMP		Vcc1 45 VEE GND	Clamps the luminance signal pedestal level. Use a low-leakage capacitor because this pin has high impedance.
46	AGC FILTER		VCC1 VEE GND	Connects AGC detection filter of luminance signal.
47	AGC OUT		Vcc1 GND	Outputs the voltage detected by the AGC detection circuit of luminance signal. When the AGC amplifier gain is high, the output voltage is high.
48	PICTURE		VCC1 48 VEE GND	Adjusts frequency response of luminance signal. Decreasing the voltage emphasizes contours.

Electrical Characteristics

AC Characteristics

Unless otherwise specified, Vcc1 = 4.5 V, Vcc2 = 12 V, VEE = GND, Ta = 25°C, SW5 \rightarrow a, SW8 \rightarrow a, SW9 \rightarrow b, SW10 \rightarrow b, SW12A \rightarrow a, SW12B \rightarrow ON, SW13 \rightarrow b, SW20 \rightarrow OFF, SW22 \rightarrow OFF, SW24 \rightarrow OFF SW26 \rightarrow OFF, SW27 \rightarrow OFF, SW38 \rightarrow a, SW46 \rightarrow OFF, SW33 \rightarrow b, SW34 \rightarrow OFF, SW35 \rightarrow OFF, SW38 \rightarrow a, SW46 \rightarrow OFF. V5 = 0 V, V6 = 2.6 V, V13 = 2.7 V, V30 = 3.5 V, V32 = 2.1 V, V42 = 2.25 V, V46 = 1.5 V, V48 = 2.5 V, and VR1=6.8 k Ω (C): input SG11, (D): input SG7b (4.5 VP-P)

Note) Adjust the burst cleaning coil so that the amplitude of the color difference signal is the same at each 1H of TP20 when SG5 (4.43 MHz, burst/chroma phase = $\pm 135^{\circ}$) is input to (B) with a standard sample.

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Video Block						
Video maximum gain	Gmax	V42 = 1.2 V, input SG8 (-15 dB) to (A). Measure the ratio between the output amplitude (white-black) and input amplitude at TP22.	33	36	39	
Amount of contrast adjustment gain variation (1)	Gct1	Input SG8 (-14 dB) to (A). V1, V0, and V2 are the output amplitude (white-black) at TP22 when V42 is changed to 1.2 V, 2.25 V	3.0	5.5		dB
Amount of contrast adjustment gain variation (2)	Gct2	and 3.3 V. Gct1 = 20log (V1/V0) Gct2 = 20log (V2/V0)		- 15	- 11	
AGC amplitude characteristics	Va1	Input SG1 (0 dB) to (A) and adjust V42 so that TP22 output amplitude (white-black) is	4.6	5.6	6.6	VP-P
	Va2	4 V when APL = 50 % Va1 and Va2 are the amplitude at TP22 when APL = 10 % and 90 %.	2.0	2.5	3.0	V P-P
AGC detection output	Vad1	Input SG1 (0 dB) to (A). Vad1, Vad2, and	2.7	3.0	3.4	
	Vad2	Vad3 are the voltage at TP47 when APL =	1.1	1.7	2.3	V
	Vad3	10 %, 50 %, and 90 %.	0.1	0.5	0.9	
Amount of image quality adjustment variation	Gp1	SW5→b, SW46→ON Input SG2 (100 kHz) to (A) and adjust V42	6.0	9.0		
(composite video input, NTSC)	Gp2	so that the amplitude of the sine wave at TP22 is 0.5 VP-P. Gp1 and Gp2 are the amount of change in the output amplitude at TP22 when SG2 is 2.1 MHz and V48 = 2 V and 3 V.		- 4.0	- 1.0	dB
Amount of image quality adjustment variation	Gp3	SW5→b, SW13→a, SW46→ON Input SG2 (100 kHz) to (A) and adjust V42	6.0	9.0		ub
(composite video input, PAL)	Gp4	so that the amplitude of the sine wave at TP22 is 0.5 VP-P. Gp3 and Gp4 are the amount of change in the output amplitude at TP22 when SG2 is 2.4 MHz and V48 = 2 V and 3 V.		- 4.0	- 1.0	

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Amount of image quality	Gp5	SW5→a, SW46→ON	14.0	17.0		
adjustment variation		Input SG2 (100 kHz) to (A) and adjust V42				
(Y/C input, Y/color	Gp6	so that the amplitude of the sine wave at		1.0	3.0	
difference input)		TP22 is 0.5 VP-P. With SG2 at 1.8 MHz,				
		Gp5 and Gp6 are the amount of change in				
		the output amplitude at TP22 when V48 = 2				
		V and 3 V.				dB
Trap attenuation	Gtf	Input SG3 (100 kHz/3.58 MHz, 0 dB) to (A)		- 45	- 30	
(NTSC)	(NT)	and measure the output level at TP1 for				
		3.58 MHz to 100 kHz.				
Trap attenuation (PAL)	Gtf	SW13→a		- 45	- 30	
	(PAL)	Input SG3 (100 kHz/4.43 MHz, 0 dB) to (A)				
		and measure the output level at TP1 for				
		4.43 MHz to 100 kHz.				
DC regeneration ratio	K	Input SG1 (APL = 10%, 0 dB) to (A). V1 is	95			%
		the output amplitude (black-black) at TP22.				
		Next, input SG1 (APL = 90%, 0 dB). V2 is				
		the output amplitude (black-black) at TP22.				
		$K = (V1 - V1 - V2) \times 100/V1$				
Chroma Block						
Maximum chroma out-	Vcmax1	SW5→b, SW13→a, V6=3.5 V	0.7	0.85	1.2	
put(composite video		Input SG5 (4.43 MHz, burst/chroma phase =				
input PAL)		±135°) to (A) and measure the amplitude of				
		the chroma signal at TP12.				VP-P
Maximum chroma out-	Vcmax2	SW13→a, V6=3.5 V	0.7	0.85	1.2	V P-P
put (Y/C input PAL)		Input SG5 (4.43 MHz, burst/chroma phase =				
		±135°) to (B) and measure the amplitude of				
		the chroma signal at TP12.				
ACC characteristics	GA1	SW5→b		0	2.0	
(composite video input		Input SG5 (0 dB, +6 dB, -25 dB), (burst/				
NTSC)	GA2	chroma phase = 180°) to (A). Measure the	- 10.0	- 5.0		
		output amplitude at TP12, labeling the				
		output corresponding to 0 dB, +6 dB and -25				
		dB as V0, V1 and V2, respectively.				
		GA1 = 20log(V1/V0) $GA2 = 20log(V2/V0)$				dB
ACC characteristics	G _A 3	SW5→a		0	2.0	
(Y/C input NTSC)		Input SG5 (0 dB, +6 dB, -25 dB), (burst/				
	GA4	chroma phase = 180°) to (B). Measure the	- 9.0	- 4.0		
		output amplitude at TP12, labeling the				
		output corresponding to 0 dB, +6 dB and -25				
		dB as V0, V1 and V2, respectively.				
		GA3 = 20log(V1/V0) $GA4 = 20log(V2/V0)$				
		Input SG5 (0 dB, +6 dB, -25 dB), (burst/chroma phase = 180°) to (B). Measure the output amplitude at TP12, labeling the output corresponding to 0 dB, +6 dB and -25 dB as V0, V1 and V2, respectively.	- 9.0	- 4.0		

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
ACC characteristics	G _A 5	SW5→b, SW13→a		0	2.0	
(composite video input		Input SG5 (0 dB, +6 dB, -25 dB), (burst/				
PAL)	GA6	chroma phase = $\pm 135^{\circ}$) to (A). Measure the	- 10.0	- 5.0		
		output amplitude at TP12, labeling the				
		output corresponding to 0 dB, +6 dB and -25				
		dB as V0, V1 and V2, respectively.				
		GA5 = 20log(V1/V0) $GA6 = 20log(V2/V0)$				
ACC characteristics	GA7	SW13→a		0	2.0	
(Y/C input PAL)		Input SG5 (0 dB, +6 dB, -25 dB), (burst/				
	GA8	chroma phase = $\pm 135^{\circ}$) to (B). Measure the	- 9.0	- 4.0		
		output amplitude at TP12, labeling the				
		output corresponding to 0 dB, +6 dB and -25				
		dB as V0, V1 and V2, respectively.				
		GA7 = 20log(V1/V0) $GA8 = 20log(V2/V0)$				
Amount of color adjust-	GC1	Input SG5 (0 dB, burst/chroma phase =		- 30	- 20	dB
ment gain variation		180°) to (B). Measure the chroma signal				
	GC2	amplitude at TP12 when V6 = 1.6 V, 2.6 V	4.0	6.0		
		and 3.5 V, labeling the corresponding output				
		as V0, V1 and V2, respectively.				
		Gc1 = 20log(V1/V0) $Gc2 = 20log(V2/V0)$				
HPF characteristics	GHP1	SW5→b		- 30	- 10	
(composite video input)		Input SG6 (4.43 MHz, 2.5 MHz, 3.58 MHz)				
	GHP2	to (A), labeling the output amplitude at TP12	- 6.0	- 2.0	1.0	
		corresponding to each frequency as V0, V1				
		and V2, respectively.				
		GHP1 = 20log(V1/V0) $GHP2 = 20log(V2/V0)$				
HPF characteristics	G HР3	SW5→a		- 30	- 10	
(Y/C input)		Input SG6 (4.43 MHz, 2.5 MHz, 3.58 MHz)				
	GHP4	to (B), labeling the output amplitude at TP12	- 6.0	- 2.0	1.0	
		corresponding to each frequency as V0, V1				
		and V2, respectively.				
		GHP3 = 20log(V1/V0) $GHP4 = 20log(V2/V0)$				
APC pull-in range	fA1	Input SG5 (0 dB) to (B). Measure the	±500	+2000		
(NTSC)		difference between 3.579545 MHz and the		-1000		
		input frequency at which the voltage at TP8				
		is 2 V or less by changing the burst				
		frequency.				
APC pull-in range	fA2	SW13→a	±500	±1200		Hz
(PAL)		Input SG5 (0 dB) to (B). Measure the				
		difference between 4.433619 MHz and the				
		input frequency at which the voltage at TP8				
		is 2 V or less by changing the burst				
		frequency.				

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Killer operation input	VbK1	Input SG5 (burst/chroma phase = 180°) to		- 42	- 37	
level (NTSC)		(B) and monitor the output at TP12.				
		Gradually reduce the input amplitude and				
		measure the input level at which the killer				
		operation is activated.				
Killer operation input	VbK2	SW13→a		- 37	- 32	dB
level (PAL)		Input SG5 (burst/chroma phase = ±135°) to				
		(B) and monitor the output at TP12.				
		Gradually reduce the input amplitude and				
		measure the input level at which the killer				
		operation is activated.				
Killer color residue	Vbs1	SW8→b, V42=2.6V		50	100	
(NTSC)		Input SG5 (burst/chroma phase = 180°) to				
		(B). Measure the amplitude of the color				
		difference output at TP24.				> /
Killer color residue	Vbs2	SW8→b, SW13→a, SW12A→b, V42=2.6V		90	180	mVP-P
(PAL)		Input SG5 (burst/chroma phase = ± 135°) to				
		(B). Measure the amplitude of the color				
		difference output at TP24.				
Demodulation output	R-Y/	Input SG5 (0 dB) to (B) and change the	0.56	0.66	0.76	
amplitude ratio (NTSC)	B-Y	chroma phase.				
	G-Y/	VR: Maximum output amplitude at TP20	0.29	0.36	0.44	
	B-Y	Vg: Maximum output amplitude at TP22				
		VB: Maximum output amplitude at TP24				
		(R-Y)/(B-Y) = VR/VB $(G-Y)/(B-Y) = VG/VB$				
Demodulation output	R-Y/	SW12A→b, SW13→a, V6 = 2 V	0.60	0.70	0.84	
amplitude ratio (PAL)	B-Y	Input SG5 (0 dB) to (B) and change the				
	G-Y/	chroma phase.	0.30	0.38	0.46	
	B-Y	VR: Maximum output amplitude at TP20				
		Vg: Maximum output amplitude at TP22				
		VB: Maximum output amplitude at TP24				
		(R-Y)/(B-Y) = VR/VB $(G-Y)/(B-Y) = VG/VB$				
Demodulation relative	θRB	Input SG5 (0 dB) to (B) and change the	80	90	100	
phase (NTSC)		chroma phase.				
	θGB	θ R: Phase in which output amplitude at	230	240	250	
		TP20 reaches a maximum				doa
		θG : Phase in which output amplitude at				deg
		TP22 reaches a maximum				
		θB: Phase in which output amplitude at				
		TP24 reaches a maximum				
		$\theta RB = \theta R - \theta B$ $\theta GB = \theta G - \theta B$				

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Demodulation relative	θRB	SW12A→b, SW13→a	80	90	100	
phase (PAL)		Input SG5 (0 dB) to (B) and change the				
	θGB	chroma phase.	230	240	254	
		θR: Phase in which output amplitude at				
		TP20 reaches a maximum				
		θG: Phase in which output amplitude at				deg
		TP22 reaches a maximum				
		θB: Phase in which output amplitude at				
		TP24 reaches a maximum				
		$\theta RB = \theta R - \theta B$ $\theta GB = \theta G - \theta B$				
Demodulation output	VCAR	(C) = OPEN		- 40	- 30	
residual carrier (NTSC)	(N)	Input SG5 (0 dB) to (B). With $V42 = 3.0 \text{ V}$,		40		
rooladar oarrior (14100)	(14)	adjust the chroma phase so that the				
		amplitude at TP24 is at a maximum. Using a				
		spectrum analyzer, measure the 7.15909				
		MHz component versus the 15.734 kHz				
Domodulation autout	VCAR	component of the output at TP24.		F0	40	dB
Demodulation output		SW12A = b, SW13 \rightarrow a, (C) = OPEN		- 50	- 40	
residual carrier (PAL)	(P)	Input SG5 (0 dB) to (B). With V42 = 3.0 V,				
		adjust the chroma phase so that the				
		amplitude at TP24 is at a maximum. Using a				
		spectrum analyzer, measure the 8.867238				
		MHz component versus the 15.625 kHz				
		component of the output at TP24.				
HUE variable range	θ+	Input SG5 (0 dB) to (B).	30	40		
		Label the phase at which the output				
	θ-	amplitude at TP24 reaches a maximum	- 30	- 40		deg
		when V13 = 1.8 V as θ 1, when V13 = 2.7 V				9
		as θ 2, and when V13 = 3.6 V as θ 3.				
		$\theta += \theta 1 - \theta 2, \ \theta -= \theta 3 - \theta 2$				
Composite→YC input	VthCY	SW5→b	1.2	1.4	1.6	
switching voltage		Input SG5 (0 dB) to (A) and gradually				
		increase the voltage V5. Measure the				
		voltage at which the output at TP12				
		disappeares.				
YC→Composite input	VthYC	SW5→b	0.7	0.9	1.1	
switching voltage		Input SG5 (0 dB) to (A) and gradually lower				V
		the voltage V5. Measure the voltage at				
		which the output at TP12 appeares.				
NTSC↔PAL switching	VthNP	Input SG5 (0 dB, 3.579545 MHz, burst/	0.4	0.7	1.0	
voltage		chroma phase = 180°) to (B) and gradually				
		lower the voltage V13. Measure the voltage				
		of V13 at which the output at TP24 ceases.				
		·				
	1					

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Color difference input -	Gmax	SW13→c, SW9→a, SW10→a, V6=3.5V	44	47	50	
output maximum gain	(CD)	,V42=1.2V, (A)(B) no input.				
		Input SG12 (40 mV amplitude) to (I) and (J).				
		Measure the amplitude at TP20 and TP24.				
Color difference input -	ΔG(CD)	SW13 \rightarrow c, SW9 \rightarrow a, SW10 \rightarrow a, (A)(B) no		- 45	- 30	dB
output gain variation		input.				
		Input SG12 (40 mV amplitude) to (I) and (J).				
		Measure the output amplitude variation at				
		TP20 and TP24 during V6 = 1.6 V versus V6				
		= 3.5 V.				
NTSC↔Y/color	VthNCD	SW13→b, SW9→a, SW10→a, V6 = 2.6 V,	3.7	4.0	4.3	V
difference switching		(A)(B) no input.				
voltage		Input SG12 (0.1 V amplitude) to (I) and (J)				
-		and gradually increase the voltage V13.				
		Measure the voltage V13 at which the				
		output at TP20 and TP24 starts.				
Sync Block	I	·				
Sync separation input	lis	Using the current from (E), measure the				
sensitivity current		input current at which the signal at TP37		21	30	μΑ
		changes from low to high.				
Sync separation output	Von	Measure the output voltage at TP37.		0.2	0.5	
ON voltage						
External sync input	Veth	Increase the amplitude at SG7b from 0 V	1.2	1.5	1.8	V
threshold		and measure the voltage at which the clamp				
		circuit begins to operate.				
H filter output gain	Ghf	Input SG7a to (A) and measure TP2.	8	10	14	dB
H filter output delay time	tpLH	Input SG7a to (A) and measure TP2.	300	500	700	
	(HF)	Rising edge tplh (HF)				ns
	tpHL	Falling edge tpHL (HF)	300	500	700	113
	(HF)					
Sync separation output	tpLH	SW38→b	8.0	1.1	1.8	
delay time	(sy)	Input SG7 (amplitude: 0.15 Vp-p) to (A) and				
	tpHL	measure the output at TP37.	0.3	0.5	0.9	μs
	(sy)	Rising edge tplh (sy)				
		Falling edge tphL (sy)				
Interface Block						
Amount of change in	Vb1	No input for (A) and (B). V32 = 1.8 V	9.0			
brightness		Measure the output (black-black) at TP20,				
		TP22, and TP24.				
	Vb2	No input for (A) and (B). V32 = 2.8 V			1.0	VP-P
		Measure the output (black-black) at TP20,				v P-P
		TP22, and TP24.				
		(When the phase is different from the case				
		of V32 = 2.1 V, make the value negative.)				

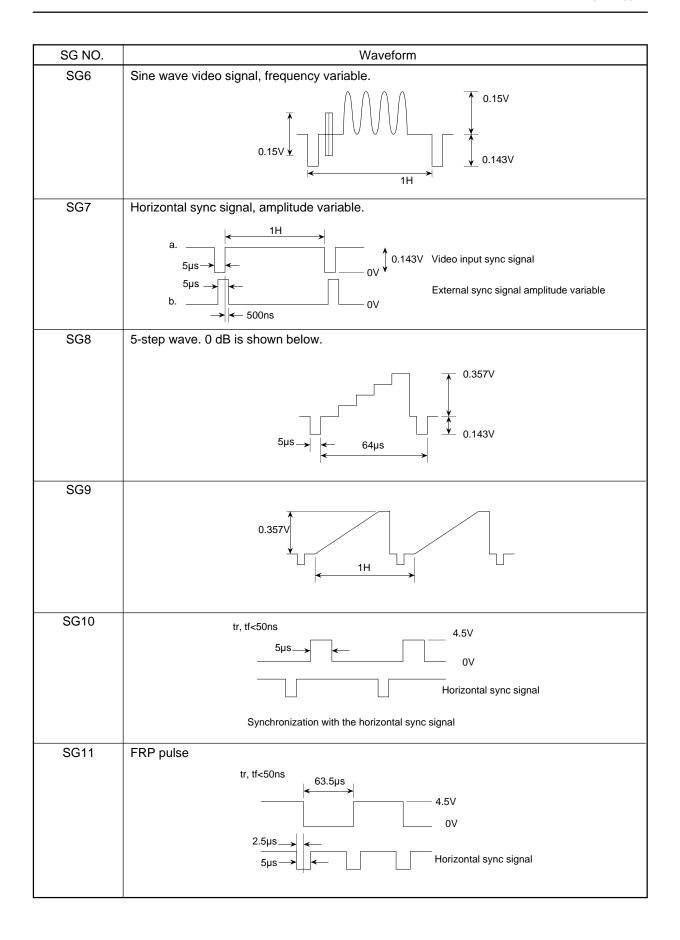
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Amount of change in sub-brightness	Vsb	No input for (A) and (B). V32 = 2.3 V Measure the difference in amplitudes (blackblack) at TP20 and TP24 when SW27 and SW28 are off, and when SW27 and SW28	±1.0	±2.5		V
		are on, and V27 and V28 are at 1.0 V and 3.0 V.				
Amount of change in sub-contrast gain	ΔGsc1	Input SG8 (-14 dB) to (A). Measure the difference in output amplitudes (white-black) at TP20 and TP24 when SW34 and SW35		- 5.0	- 4.0	dB
	ΔGsc2	are off, and when SW34 and SW35 are on, and V34 and V35 are at 1.0 V and 3.0 V. Define them as $\Delta Gsc1$ and $\Delta Gsc2$, respectively.	2.5	3.5		
RGB output DC voltage	VRGB	No input for (A) and (B). Adjust V32 and measure the DC voltage at TP20, TP22, and TP24 with the amplitude (black-black) at TP22 is 0 V and 9 VP-P.	5.8	6.0	6.2	V
Difference in electric po-tential for inter-RGB output black levels	ΔVBL	No input for (A) and (B). Measure the difference between the maximum and minimum black levels when TP20, TP22, and TP24 are reversed and not reversed, respectively.			300	mV
Difference in reversed/ non-reversed voltage gain	ΔGINV	Input SG8 (-11 dB) to (A). Measure the difference between the non-reversed output amplitude (white-black) and the reversed output amplitude at TP20, TP22 and TP24.		±0.3	±0.6	
Difference in inter-RGB gain (with DL OFF)	ΔGRBG	Input SG8 (-11 dB) to (A). Measure the level difference of the maximum and minimum in non-reversed output amplitude (white-black) at TP20, TP22 and TP24.		0.3	0.6	dB
Difference in inter-RGB gain (with DL ON)	ΔGRBG	SW33→a Input SG8 (-11 dB) to (A). Measure the level difference of the maximum and minimum in non-reversed output amplitude (white-black) at TP20, TP22 and TP24.		0.4	0.7	
FRP input threshold	VthFRP	Input SG8 (-11 dB) to (A). While increasing the voltage at (C), measure the voltage at which the output reverses at TP20, TP22, and TP24.	1.2	1.5	1.8	V

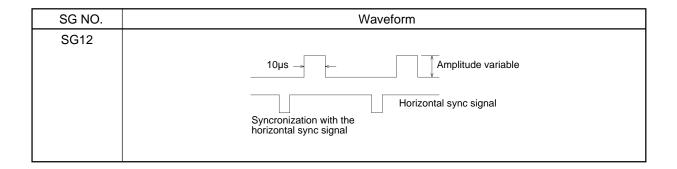
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
External digital RGB	VthEXT1	Input SG8 (-11 dB) to (A).	1.0	1.2	1.4	
input threshold		Input SG10 to (F), (G), and (H) and increase				
	VthEXT2	the amplitude starting from 0 V; VthEXT1 is	2.0	2.2	2.4	
		the voltage at which the output goes to black				V
		level for the input at TP20, TP22, and TP24				V
		Increase the voltage further; VthEXT2 is the				
		voltage at which the output for that input				
		goes to white level.				
γ compensation charac-	Gγ1	SW31→ON, SW46→ON, V30 = 2.1 V, V31	33	36	39	
teristics		= 2.1 V, V42 = 1.2 V (contrast Max.)				dB
	Gγ2	Input SG9 to (A), and measure the gain at	19	22	25	uБ
		TP20, TP22, and TP24.				
	VWγ2		0.5	0.7	0.9	V
		Output Peak limiter				
		A VWIZ				
		Gg2				
		Gg1				
		<u>/</u> Input				
		iliput				
		Vwγ2 is the difference in electric potential				
		between point B, where the compensation				
		cuts out, and the peak limit point.				
Delay line R delay time	tDR1	SW33→a, VR1 = 9.1 kΩ, V42 = 2.7 V.	105			
		Input SG4 to (A). Measure the delay time at				
		TP20 output to TP22 output.				
	tDR2	SW33→a, VR1 = 4.7 kΩ, V42 = 2.7 V.			45	
		Input SG4 to (A). Measure the delay time at				
		TP20 output to TP22 output.				
Delay line B delay time	tDB1	SW33→a, VR1 = 9.1 kΩ, V42 = 2.7 V.	210			ns
		Input SG4 to (A). Measure the delay time at				
		TP24 output to TP22 output.				
	tDB2	SW33→a, VR1 = 4.7 kΩ, V42 = 2.7 V.			90	
		Input SG4 to (A). Measure the delay time at				
		TP24 output to TP22 output.				
Delay line RB delay	t D(RAT)1	tpHL1tD (RAT)1 = tDR1 / tDB1	0.4	0.5	0.6	
ratio	tD(RAT)2	tD (RAT)2 = tDR2 / tDB2	0.4	0.5	0.6	
Propagation delay time	tpLH1	SW5→b, SW20, SW22, SW24→ON	400	520	700	
between input and		Input SG4 to (A). Adjust V42 and set the				
output (composite input)	tpHL1	amplitude (white - black) at TP20, TP22,	400	520	700	
,		and TP24 to 4 V, and measure the rise time				
		tpLH1 and fall time tpHL1.				ns
Propagation delay time	tpLH2	SW5→a, SW20, SW22, SW24→ON	400	520	700	-
between input and	'	Input SG4 to (A). Adjust V42 and set the				
output (Y/C input)	tpHL2	amplitude (white - black) at TP20, TP22,	400	520	700	
	, p. 122	and TP24 to 4 V, and measure the rise time	.55	0_0	. 55	
		tpLH2 and fall time tpHL2.				
		periz and ran anto thines.				

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Propagation delay time	tpLH3	SW13→c, SW20, SW22, SW24→ON	200	300	400	
between input and		SW12B→OFF				
output		Input SG4 to (A). Adjust V42 and set the				
(Y/color difference	tpHL3	amplitude (white-black) at TP20, TP22, and	200	300	400	
input)		TP24 to 4V, and measure the rise time				
		tpLH3 and fall time tpHL3.				
Propagation delay time	tpLH4	SW20, SW22, SW24→ON		120	180	ns
between EXT and		Input SG10 to (F), (G), and (H). Use V30 to				115
output	tpHL4	adjust the output amplitude at TP20, TP22,	140	200	260	
		and TP24 to 4.5 V, and measure the rise				
		time tpLH4 and fall time tpHL4.				
Output rise and fall	tTLH	SW20, SW22, SW24→ON	20	50	100	
times for EXT input		Input SG10 to (F), (G), and (H). Use V30 to				
	tTHL	adjust the output amplitude at TP20, TP22,	60	100	160	
		and TP24 to 4.5 V, and measure the rise				
		time tTLH and fall time tTHL.				
Frequency response	f1DON	SW5→a, SW20, SW22, SW24→ON,	5.0	6.0		
		V42=2.6V, V48=1.7V				
		Input SG2 (100kHz) to (A). Increase the				
		frequency of input signal and measure the				
	f1DOFF	frequency at SW33 ON/OFF, respectively.	5.0	6.0		
		The frequency must be measured at 3dB				
		lowered in comparison with when sine wave				
		amplitude is 100kHz.				
	f2DON	SW5→a, SW20, SW22, SW24→ON,	3.0	4.0		MHz
		V42=2.6V, V48=3.0V				
		Input SG2 (100kHz) to (A). Increase the				
		frequency of input signal and measure the				
	f2DOFF	frequency at SW33 ON/OFF, respectively.	3.0	4.0		
		The frequency must be measured at 3dB				
		lowered in comparison with when sine wave				
		amplitude is 100kHz.				
CLIP control range	VCLIP	No input for (A) and (B). V32 = 2.3 V	3.0	4.0		V
		Measure the difference in the output				
		amplitude (black - black) at TP20, TP22,				
		and TP24 when SW26→OFF and when				
		SW26→with V26 = 3.0 V.				
	L					

Electrical Characteristics

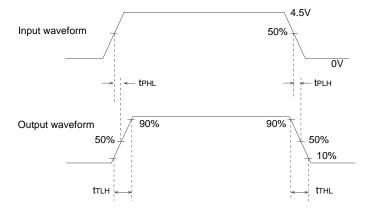
DC Characteristics

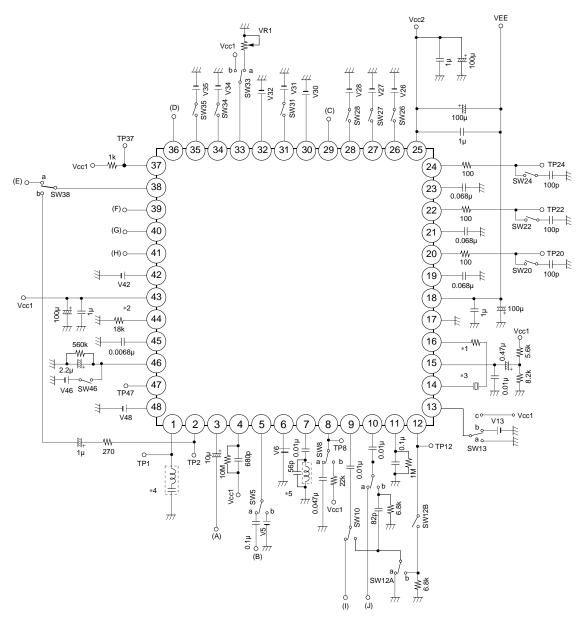

Unless otherwise specified, Vcc1 = 4.5 V, Vcc2 = 12 V, VEE = GND, Ta = 25°C, SW5 \rightarrow a, SW8 \rightarrow a, SW9 \rightarrow b, SW10 \rightarrow b, SW12A \rightarrow a, SW12B \rightarrow ON (SW12B \rightarrow OFF for Y/color difference input), SW13 \rightarrow b (SW13 \rightarrow c for Y/color difference input), SW20 \rightarrow OFF, SW22 \rightarrow OFF, SW24 \rightarrow OFF, SW26 \rightarrow OFF, SW27 \rightarrow OFF, SW28 \rightarrow OFF, SW31 \rightarrow OFF, SW33 \rightarrow a, SW34 \rightarrow OFF, SW35 \rightarrow OFF, SW38 \rightarrow a, and SW46 \rightarrow OFF.


V6 = 2.6 V, V13 = 2.7 V, V30 = 3.5 V, V32 = 2.1 V, V42 = 2.25 V, V48 = 2.5 V, and $VR1 = 6.8 \text{ k}\Omega$ (C): input SG11, (D): input SG7b (4.5 VP-P)

No.	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
1	Current consumption	Icc1A	Measure the inflow current to Pin 43		27.0	35.0	
2	Current consumption (for Y/color	Icc1B	Measure the inflow current to Pin 43		24.0	32.0	mA
	difference input)						''''
3	Current consumption	Icc2	Measure the inflow current to Pin 25		3.0	4.3	
4	TRAP output impedance	Z1			1.0		
5	VIDEO IN input impedance	Z3			12.0		
6	C IN input impedance	Z5			3.6		
7	BURST OUT output impedance	Z7			2.5		
	R-Y input impedance	Z9	Hi-Z when Y/color difference input		21		
9	B-Y input impedance	Z10	Hi-Z when Y/color difference input		21		
10	CLIP input impedance	Z26			53		kΩ
	SUB BRIGHT R input impedance	Z27			53		
12	SUB BRIGHT B input impedance	Z28			53		
13	GAMMA2 input impedance	Z31			53		
14	SUB CONTRAST R input impedance	Z34			53		
	SUB CONTRAST B input impedance	Z35			53		
16	EXT B IN input impedance	Z39			100		
	EXT G IN input impedance	Z40			100		
	EXT R IN input impedance	Z41			100		
19	C IN pin current	15	V5=GND		4.0	6.0	
	COLOR pin current	16	V6=3.5V		0.3	1.0	
21	HUE pin current	I13	V13=4.0V		0.2	1.0	
22	HUE pin current	I13	V13=GND	- 1.0	- 0.2		μΑ
	FRP pin current	129	V29=GND	- 1.0			μΛ
24	GAMMA1 pin current	130	V30=GND	- 6.0	- 2.0		
	BRIGHT pin current	l32	V32=2.5V		0.2	1.0	
	SYNC IN pin current	I36	V36=GND	- 1.0	- 0.2		
	CONTRAST pin current	I42	V42=3.0V		0.2	1.0	
28	PICTURE pin current	148	V48=3.0V		0.2	1.0	

Input Waveforms


SG NO.	Waveform				
SG1	APL variable, 5-step wave				
	APL10%				
	0.357V 0.143V				
	APL50%				
	APL90%				
SG2	The sine wave video signal is shown below. Amplitude and frequency are variable.				
	0.175V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	→ O.143V				
	1				
SG3	Sine wave; amplitude 150 mVP-P, frequency variable				
SG4	0.357V				
	10μsec				
SG5	Chroma signal Burst amplitude 150 mVP-P, chroma amplitude 150 mVP-P Burst, chroma frequency (3.579545 MHz, 4.433619 MHz) Chroma phase variable				
	0.15V				



Switching Characteristics

Timing chart

Electrical Characteristics Measurement Circuit

- *1 1 k Ω for NTSC, no resistance for PAL.
- *2 Allowable difference in resistance: ±2 %

Temperature characteristics: ±200 ppm

*3 KINSEKI CX-5F

Frequency: 3.579545 MHz (NTSC mode)

4.433619 MHz (PAL mode)

Load capacity 16 pF, frequency deviation within ±30 ppm, frequency temperature characteristics within ±30 ppm

*4 TDK NLT 4532-S3R6B (NTSC mode)

NLT 4532-S4R4 (PAL mode)

*5 TOKO 332 PN-2636BS

Description of Operation

• Trap

The trap frequency switches between 3.58 MHz for NTSC and 4.43 MHz for PAL.

When using Y/C input and Y/color difference input, the signal does not pass through the trap.

Video AGC circuit

Different AGC characteristics are obtained, depending on the APL level of the luminance signal.

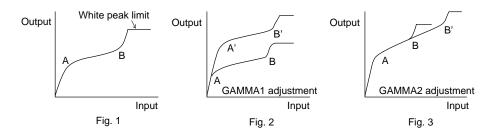
The gain for the luminance signal is adjusted through peak detection.

· ACC detection, ACC amplifier

The peak amplitude of the ACC amplifier output burst signal is detected, and is used to control the ACC amplifier gain.

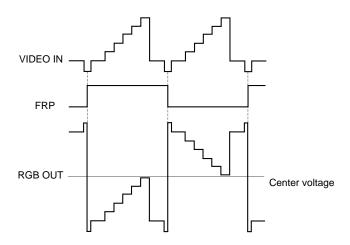
• VXO, APC detection

The VXO local oscillation circuit is a Pierce-type crystal oscillation circuit.


The phases of the input burst signal and the VXO oscillator output are compared in the APC detection block, and the detective output is used to form a PLL loop that controls the VXO oscillation frequency, which means that the need for adjustments is eliminated.

External inputs

Digital input with two thresholds has a pull-down resistor of $100 \text{ k}\Omega$. When one of the RGB inputs is higher than the lower threshold VTH1, all RGB outputs go to black level. When the higher threshold VTH2 is exceeded, the output for only the signal in question goes to white level, while the other outputs remain at black level.


γ compensation

In order to support the characteristics of liquid crystal panels, the I/O characteristics are as shown in Fig. 1. The characteristics can be changed to those shown in Fig. 2 by adjusting Pin 30, or to those shown in Fig. 3 by adjusting Pin 31. The peak limiter function is linked to point B.

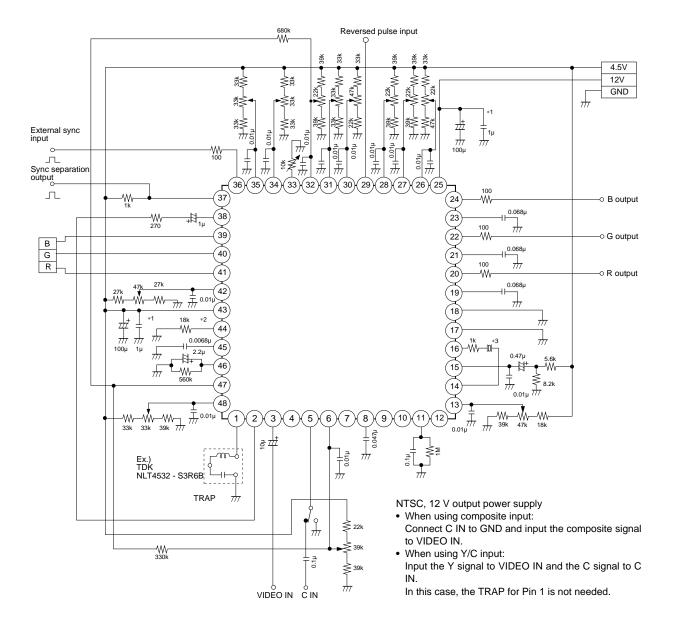
RGB output

The primary color signals from the RGB outputs (Pins 20, 22, and 24) are reversed by the FRP pulse input to Pin 29, as shown in Fig. 4. Feedback is applied so that the center voltage of the output signals matches the reference voltage (Vcc2 + VEE)/2.

Notes on Operation

• Power supply pins

Always connect the minimum electric potential applied to the IC to Pin 18; do not leave Pin 18 open.


The voltages applied to the supply voltage pins must satisfy the following relationship:

$$VEE \le GND \le VCC1 \le VCC2$$

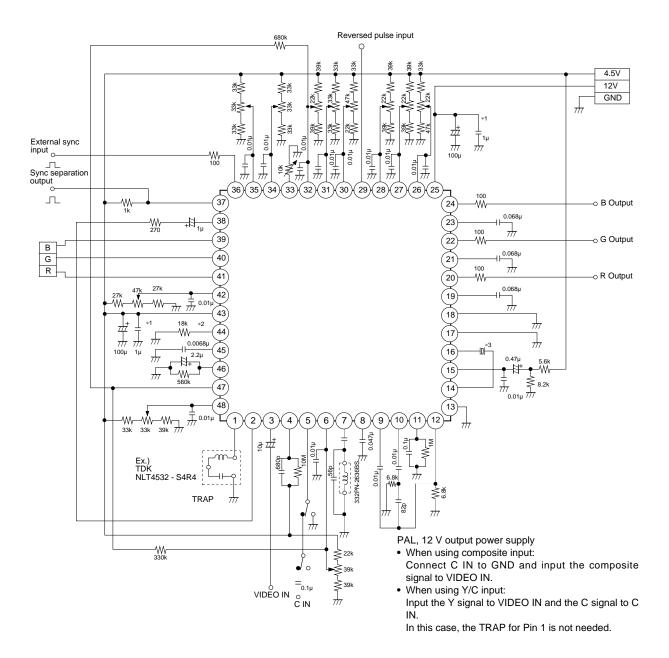
• White balance adjustment

If the SUB BRIGHT (Pins 27 and 28) and the SUB CONTRAST (Pins 34 and 35) are left at their preset states and no white balance adjustment is made in the liquid crystal display system, the white balance may be lost due to slight variations in the electronic components in this system. Therefore, it is recommended that some type of white balance adjustment always be made.

Application Circuit (NTSC)

- *1 Use a ceramic capacitor for the decoupling capacitor 1µF for the power supply, and connect it close to the IC pin.
- *2 Allowable difference in resistance: ±2 %

Temperature characteristics: ±200 ppm


*3 KINSEKI CX-5F

Frequency: 3.579545 MHz

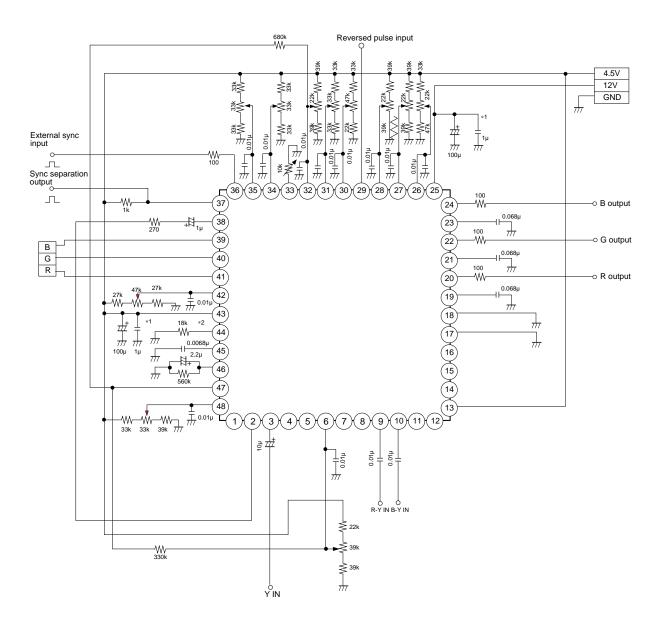
Load capacity 16 pF, frequency deviation within ±30 ppm, frequency temperature characteristics within ±30 ppm

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Application Circuit (PAL)

- *1 Use a ceramic capacitor for the decoupling capacitor 1µF for the power supply, and connect it close to the IC pin.
- *2 Allowable difference in resistance: ±2 %

Temperature characteristics: ±200 ppm

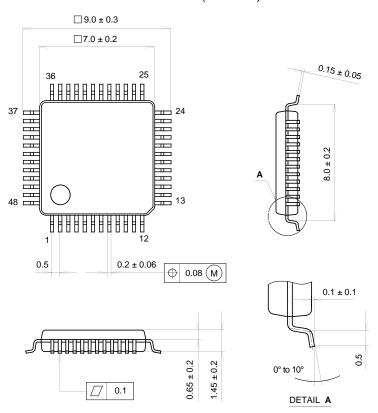

*3 KINSEKI CX-5F

Frequency: 4.433619 MHz

Load capacity 16 pF, frequency deviation within ±30 ppm, frequency temperature characteristics within ±30 ppm

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Application Circuit (Y/color difference input)


- *1 Use a ceramic capacitor for the decoupling capacitor 1µF for the power supply, and connect it close to the IC pin.
- *2 Allowable difference in resistance: ±2 %

Temperature characteristics: ±200 ppm

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Package Outline Unit: mm

48PIN LQFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	LQFP-48P-L111
EIAJ CODE	LQFP048-P-0707-AP
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN		
LEAD TREATMENT	SOLDER PLATING		
LEAD MATERIAL	42 ALLOY		
PACKAGE WEIGHT	0.2g		