All Band TV Tuner IC (VHF-CATV-UHF)

Description

The CXA1665AM/AM-S is a single chip TV tuner IC which performs as an oscillator, mixer for VHF/CATV and UHF bands. An IF amplifier is also provided.
This IC adopts a 16-pin SOP package in response to the trend toward miniaturizing the tuner and automatic IC mounting. This IC achieves a large reduction of external parts in addition to miniaturizing the tuner and increasing manufacturing productivity, reliability and design efficiency.

Features

- On-chip oscillator and mixer for UHF band
- Low noise figure
- Reduced spurious interference
- Superior cross modulation distortion
- Stable oscillating characteristics
Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Supply voltage
- Storage temperature
- Allowable power dissipation | Po | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | | | 11 | V |
| (When mounted on a board) | | | | | |

(When mounted on a board)

Structure

Bipolar silicon monolithic IC

Applications

- CTV tuner
- CATV UP-DOWN converter
- FM detector for 2nd IF satellite broadcasts

Operation Conditions

- Supply voltage
- Operating temperature

Pin Description and Equivalent Circuit

Electrical Characteristics
(See Electrical Characteristics Measurement Circuit. Ta $=25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=9 \mathrm{~V}$)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Circuit current	IccV	VHF operation; no signal	30	45	58	mA
	IccU	UHF operation; no signal	29	44	57	mA
Conversion gain*1	CG1	VHF operation; fRF $=55 \mathrm{MHz}$; Input level -40 dBm	20	23	26	dB
	CG2	VHF operation; frF $=360 \mathrm{MHz}$; Input level -40 dBm	20	23	26	dB
	CG3	UHF operation; frF $=360 \mathrm{MHz}$; Input level -40 dBm	25	28	31	dB
	CG4	UHF operation; frF $=800 \mathrm{MHz}$; Input level -40 dBm	25	28	31	dB
Noise figure ${ }^{* 1}{ }^{*} 2 * 4$	NF1	VHF operation; fRF $=55 \mathrm{MHz}$		10	13	dB
	NF2	VHF operation; $\mathrm{fRF}=360 \mathrm{MHz}$		10	13	dB
	NF3	UHF operation; $\mathrm{fRF}=360 \mathrm{MHz}$		7	11	dB
	NF4	UHF operation; fRF $=800 \mathrm{MHz}$		8	12	dB
1% cross modulation * 1 *3	CM1	VHF operation; $\mathrm{fD}=55 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}$	96	100		dB μ
	CM2	VHF operation; fD $=360 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}$	94	98		dB μ
	CM3	UHF operation; fD $=360 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}$	88	92		dB μ
	CM4	UHF operation; $\mathrm{fD}=800 \mathrm{MHz}$, $\mathrm{fuD}= \pm 12 \mathrm{MHz}$	87	91		dB μ
Max. output power	Pomax (sat)	50Ω load	+8	+11		dBm
Switch ON drift*4	$\Delta \mathrm{fsw} 1$	VHF operation; fosc $=100 \mathrm{MHz}$ frequency drift for the time from 3s to 3 min after switch ON			± 300	kHz
	$\Delta \mathrm{fsw} 2$	VHF operation; fosc $=405 \mathrm{MHz}$ frequency drift for the time from 3s to 3min after switch ON			± 500	kHz
	$\Delta \mathrm{fsw} 3$	UHF operation; fosc $=405 \mathrm{MHz}$ frequency drift for the time from 3s to 3 min after switch ON			± 500	kHz
	$\Delta \mathrm{fsw} 4$	UHF operation; fosc $=845 \mathrm{MHz}$ frequency drift for the time from 3s to 3 min after switch ON			± 500	kHz
+B supply voltage drift	$\Delta \mathrm{fst} 1$	VHF operation; fosc $=100 \mathrm{MHz}$ frequency shift when Vcc +9 V changes $\pm 5 \%$			± 200	kHz
	$\Delta \mathrm{fst}$ 2	VHF operation; fosc $=405 \mathrm{MHz}$ frequency shift when Vcc +9 V changes $\pm 5 \%$			± 250	kHz
	$\Delta \mathrm{fst} 3$	UHF operation; fosc $=405 \mathrm{MHz}$ frequency shift when Vcc +9 V changes $\pm 5 \%$			± 250	kHz
	$\Delta \mathrm{fst} 4$	UHF operation; fosc $=845 \mathrm{MHz}$ frequency shift when Vcc +9 V changes $\pm 5 \%$			± 250	kHz

*1 Measured value for untuned inputs.
*2 Noise figure is uncorrected for image.
*3 Desired signal (fD) input level is -33 dBm .
undesired signal (fud) is 100 kHz at $30 \% \mathrm{AM}$.
The measurement value is undesired signal level, it measured with a spectrum analyzer at $\mathrm{S} / \mathrm{I}=46 \mathrm{~dB}$.
*4 Design guaranteed items.
Electrical Characteristics Measurement Circuit

Description of Operation (See Electrical Characteristics Test Circuit.)

(1) VHF oscillator circuit

The differential oscillator circuit with an output at Pin 16 and an input at Pin 1.
Connect an LC resonance circuit comprising a varicap diode to Pin 16 through a coupling capacitor. The positive feedback from the resonance circuit is applied to Pin 1 through a feedback capacitor to execute oscillation. Note that if a parasitic capacitance across Pins 1 and 16 is too large, it may cause undesired oscillation.
(2) VHF mixer circuit

This is a double-balanced mixer having small leakage of local oscillation signal. The RF signal is input to Pins 7 and 8. In normal use, the signal is input to one pin while the other pin is connected to GND by decoupling capacitor. The RF signal is converted to IF with the signal supplied from oscillator. The converted RF is sent to the IF amplifier and output to Pins 3 and 4 simultaneously.
(3) UHF oscillator circuit

UHF oscillator is formed from two collector-grounded Colpitts oscillator, and oscillation is provided at the differential input through an LC resonator circuit including a varicap diode.
The Pin 12 also functions as UHF/VHF switch pin.
(4) UHF mixer circuit

This is the double-balanced mixer like the VHF mixer. The RF signal is input to Pins 9 and 10. There is a balanced differential input from pre-stage double tune circuit, or an unbalanced input to Pin 9 with the capacitor connected at Pin 10 to GND. Balanced input achieves better NF rather than unbalanced input.
Otherwise, the conditions and usage are the same as those for the VHF mixer circuit.
(5) IF amplifier circuit

The mixer output signal is amplified by the IF amplifier and output to Pin 5 . The output impedance is about 75Ω.
(6) UHF/VHF switch circuit

UHF/VHF mode is selected by the DC voltage at Pin 12. UHF operation is chosen by inputting 9V through a $20 \mathrm{k} \Omega$ resistor, and VHF operation by inputting 0 V . If the UHF switch voltage is 12 V not 9 V , adjust the resistance to approximately $30 \mathrm{k} \Omega$ so that the DC voltage becomes almost equal between Pins 12 and 15 . Be sure to connect a resistor for discharging (approx. $10 \mathrm{k} \Omega$) if OPEN not 0 V is chosen for the VHF switch voltage.

Note on Usage

Care should be taken such as grounding in placing external parts because high frequencies are present. Adjust accordingly to prevent heat problems with special care such as the GND pattern for heat dissipation at the portion for IC mount where heat dissipations accumulate.

Example of Representative Characteristics

Noise figure vs. Reception frequency (Untuned input, in DSB)

Conversion gain vs. Reception frequency (Untuned input)

Next adjacent cross modulation vs. Reception frequency (Untuned input)

VHF Input Impedance

UHF Input Impedance

IF Output Impedance

Package Outline

CXA1665AM
Unit: mm

CXA1665AM-S

