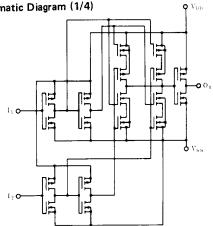
MN4030B/S, MN4070B/S

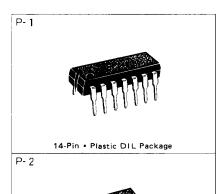
Quad Exclusive-OR Gates

Description

The MN4030B/S and MN4070B/S are EXCLUSIVE-OR gates and have 4 circuits in a package.

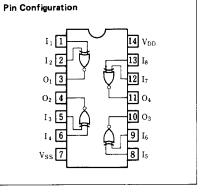
The outputs are fully buffered to improve the propagation characteristics between the input and output which are affected by increasing load capacitance and minimizes propagation delay time. Their primary use is where low power dissipation and/or high noise immunity is desired.


Typical applications include digital comparators and parity checkers.


These are equivalent to MOTOROLA MC14070B and RCA CD4070B.

Truth Table

I,	l ₂	O1
L	L	L
Н	L	Н
L	Н	Н
Н	Н	L


Schematic Diagram (1/4)

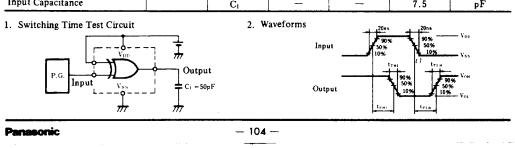
14-Pin • Panaflat Package (SO-14D)

$\blacksquare Maximum Ratings (Ta = 25 \degree C)$

Item		Symbol	Ratings	Unit
Supply Voltage		V _{DD}	-0.5~+18	V
Input Voltage		VI	$-0.5 \sim V_{DD} + 0.5^*$	v
Output Voltage		Vo	$-0.5 \sim V_{DD} + 0.5^*$	V
Peak Input · Output Current		$\pm I_1$	max. 10	mA
Power Dissipation	Ta=-40~+60℃	•	max. 400	- mW
(per package)	Ta=+60~+85℃	\mathbf{P}_{D}	Decrease up to 200mW rating at 8mW/°C	
Power Dissipation (per output terminal)	P _D	max. 100	mW
Operating Ambient Temperature		Topr	-40~+85	°C
Storage Temperature		Tstg	-65~+150	Ĉ

- 103 --

Panasonic


CMOS Logic MN4000B Series

DC	Characteristics	$(V_{SS} = 0V)$
		1 22 01/

Item	V _{DD}	Sym-	Conditions		Ta ≥ -40°C		Ta=25℃		Ta=85℃		Unit
		bol	Conditions		min.	max.	min.	max.	min.	max.	Unit
	5				—	1	—	1	—	7.5	
Quiescent Power Supply Current	10	IDD	$V_l = V_{SS} or$	V _{DD}		2		2		15	μA
Supply Culton	15				—	4	—	4	—	30	
	5				_	0.05		0.05		0.05	
Output Voltage Low Level	10	Vol	$V_I = V_{SS}$ or	VDD	_	0.05		0.05	—	0.05	V
TOM Tevel	15		I ₀ <1µA			0.05	—	0.05	_	0.05	
	5				4.95		4.95		4.95	_	
Output Voltage	10	V _{OH}	V _I =V _{SS} or	V _{DD}	9.95		9.95		9.95		V
High Level	15		$ \mathbf{I}_0 < 1 \mu \mathbf{A}$	$ I_0 < 1 \mu A$		_	14.95		14.95	_	
	5			V ₀ =0.5V or 4.5V	_	1.5	—	1.5		1.5	
Input Voltage Low Level	10	VIL	$ I_0 < 1 \mu A$	V ₀ =1V or 9V		3	_	3	—	3	v
LOW Level	15			V ₀ =1.5V or 13.5V	_	4	_	4.		4	
	5			Vo=0.5V or 4.5V	3.5	—	3.5	—	3.5	—	
Input Voltage High Level	10	VIH	I ₀ <1µA	Vo=1V or 9V	7		7	_	7		v
Ingh Level	15			V ₀ =1.5V or 13.5V	11		11		11	—	
	5		$V_0 = 0.4V_{,}$	$V_l = 0 \text{ or } 5V$	0.52		0.44		0.36	_	
Output Current Low Level	10	IOL	$V_0 = 0.5V_{,}$	$V_1 = 0$ or $10V$	1.3	_	1.1	— ·	0.9		mA
Low Level	15		$V_0 = 1.5V_1$	$V_1 = 0$ or 15V	3.6		3		2.4		
	5		$V_0 = 4.6V_1$	$V_1 = 0 \text{ or } 5V$	0.52	_	0.44		0.36	_	
Output Current High Level	10	- Іон	V ₀ =9.5V,	$V_1 = 0 \text{ or } 10V$	1.3	—	1.1	_	0.9		mA
HIGH LEVEL	15		V ₀ =13.5V	$V_{I} = 0 \text{ or } 15V$	3.6		3		2.4	_	
Output Current High Level	5	-I _{OH}	$V_0 = 2.5V_1$	$V_i = 0 \text{ or } 5V$	1.7	_	1.4	_	1.1	_	mA
Input Leakage Current	15	$\pm I_1$	V _I =0 or 15	5V		0.3		0.3		1	μA

Switching Characteristics $(T_a = 25^{\circ}C, V_{SS} = 0V, C_L = 50pF)$

Item	$V_{DD}(V)$	Symbol	min.	typ.	max.	Unit	
Output Rise Time	5			60	180		
	10	t _{TLH}	—	30	90	ns	
	15		-	20	60		
Output Fall Time	5		-	60	180		
	10	t _{THL}	—	30	90	ns	
	15		-	20	60	1	
Propagation Delay Time	5	t _{PLH}		75	225		
	10		_	30	90	ns	
	15		—	25	75		
Propagation Delay Time	5	t _{PHL}		85	255		
	10		-	35	105	ns	
	15			30	90		
Input Capacitance		Cı			7.5	pF	

