

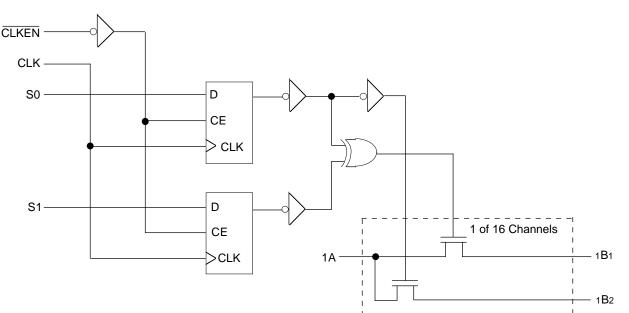
16-BIT SYNCHRONOUS 2:1 MUX/DEMUX SWITCH

IDT74FST163232 ADVANCE INFORMATION

FEATURES:

- Bus switches provide zero delay paths
- Extended commercial range of -40°C to +85°C
- Low switch on-resistance:
- $FST163xxx 4\Omega$
- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- Available in SSOP, TSSOP and TVSOP

DESCRIPTION:


The FST163232 belong to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. Thus they generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts and the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no Vcc applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.

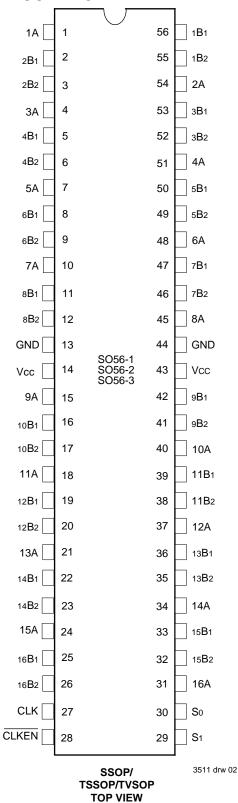
The FST163232 provides three 16-bit TTL- compatible ports that support 2:1 multiplexing. The S0,1 pins control mux select and switch enable/disable. The S0,1 inputs are synchronous and clocked on the rising edge of CLK when CLKEN is low.

Port A can be connected to port B1 or port B2 or both ports B1 and B2.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

Pin Names	I/O	Description
A	I/O	Bus A
B1, B2	I/O	Buses B1, B2
S 0,1	I	Control Pins
CLK	I	Clock Input. Clocks S0,1 on Rising Edge
CLKEN	I	Clock Enable Input


3511 tbl 01

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

©1997 Integrated Device Technology, Inc.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max.	Unit		
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V		
Tstg	Storage Temperature	-65 to +150	°C		
IOUT Maximum Continuous Channel Current		128	mA		
NOTES	NOTES: 3511 tbl 02				

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condiitions for extended periods may affect reliability.

2. Vcc, Control and Switch terminals.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions ⁽²⁾	Тур.	Unit
CIN	Control Input Capacitance		4	pF
Ci/o	Switch Input/Output Capacitance	Switch Off		pF
NOTES: 3511 tbl 03				

NOTES:

1. Capacitance is characterized but not tested

2. TA = 25°C, f = 1MHz, VIN = 0V, VOUT = 0V

FUNCTION TABLE

S 1	So	CLK	CLKEN	Description
Х	Х	Х	Н	Last state
L	L	\uparrow	L	Disconnect
L	Н	1	L	A to B1 and A to B2
Н	L	\uparrow	L	A to B1 or B1 to A
Н	Н	1	L	A to B2 or B2 to A

511 tbl 04

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Commercial: TA = -40° C to $+85^{\circ}$ C, VCC = $5.0V \pm 10\%$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs		2.0	—	—	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Co	ntrol Inputs		—	0.8	V
Іін	Input HIGH Current	Vcc = Max.	VI = VCC	_	—	±1	μA
lı∟	Input LOW Voltage]	VI = GND		—	±1	1
lozн	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	—	±1	μA
lozl	(3-State Output pins)		Vo = GND		—	±1	1
los	Short Circuit Current	Vcc = Max., Vo = $GND^{(3)}$		_	300	_	mA
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA			-0.7	-1.2	V
Ron	Switch On Resistance ⁽⁴⁾	Vcc = Min. VIN = 0.0V			4	7	Ω
		ION = 64mA					
		Vcc = Min. VIN = 0.0V		_	4	7	Ω
		ION = 32mA					
		Vcc = Min. VIN = 2.4V		_	6	15	Ω
		ION = 15mA					
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo ≤ 4.5 V		_	—	±1	μA
lcc	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc		_	0.1	3	μA
TES:	-	-					3511 tbl

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. Measured by voltage drop between ports at indicated current through the switch.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $VIN = 3.4V^{(3)}$			0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open Enable Pin Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	30	40	μΑ/ MHz/ Switch
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open CLK Pin Toggling	VIN = VCC VIN = GND		4.8	6.4	mA
		(16 Switches Toggling) fi = 10MHz 50% Duty Cycle	VIN = 3.4 VIN = GND		5.1	7.2	

3511 tbl 06

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

- Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fiN)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fi = Input Frequency

N = Number of Switches Toggling at fi

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Commercial: TA = -40° C to $+85^{\circ}$ C, VCC = 5.0V $\pm 10\%$

Symbol	Description	Condition ⁽¹⁾	Min. ⁽²⁾	Тур.	Max.	Unit
t PLH	Data Propagation Delay	CL = 50pF	—	—	0.25	ns
t PHL	A to B, B to A ^(3,4)	RL = 500Ω				
tCEWS	Clock Enable Set-Up Time			—	—	ns
	CLKEN to CLK Low-to-High					
t CENH	Clock Enable Hold Time			—	—	ns
	CLKEN to CLK Low-to-High					
tвx	Switch Multiplex Delay		1.5	—	6.5	ns
	CLK to A, B					
t PZH	Switch Turn on Delay		1.5	—	6.5	ns
tPZL	CLK to A, B					
t PHZ	Switch Turn off Delay		1.5	—	7	ns
tPLZ	CLK to A, B					
Qci	Charge Injection, Typical ^(5,7)		_	1.5		рС
QDCI	Differential Charge Injection, Typical ^(6,7)		_	0.5		

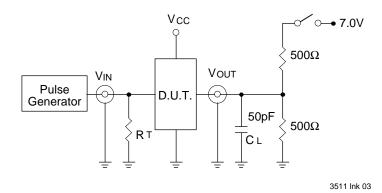
NOTES:

1. See test circuit and waveforms.

2. Minimum limits guaranteed but not tested.

3. This parameter is guaranteed by design but not tested.

4. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 2.5ns for 50pF load. Since this time is constant and much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay on the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.


5. Measured at switch turn off, load = 50 pF in parallel with 10 M Ω scope probe, VIN = 0.0 volts.

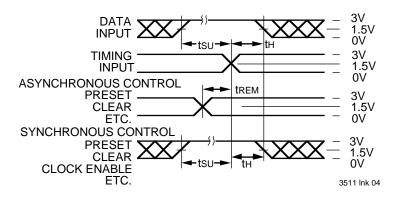
6. Measured at switch turn off through bus multiplexer, (e.g.- A to B1 = >A to B2), load = 50 pF in parallel with 10 MΩ scope probe, VIN at A = 0.0 volts. Charge injection is reduced because the injection from the turn off of the A to B1 switch is compensated by the turn on of the A to B2 switch.

7. Characterized parameter. Not 100% tested.

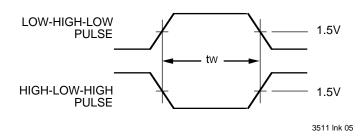
3511 tbl 07

TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

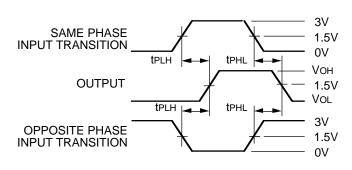
SWITCH POSITION


Test	Switch
Open Drain Disable Low	Closed
Enable Low	
All Other Tests	Open
	3511 lnk 08

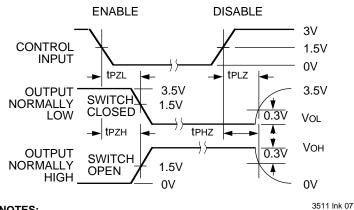
DEFINITIONS:


CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.


SET-UP, HOLD AND RELEASE TIMES

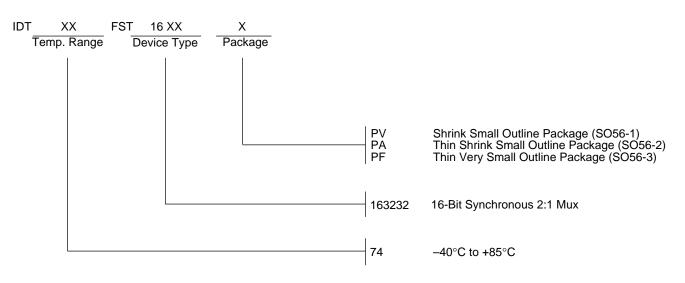
PULSE WIDTH



PROPAGATION DELAY

3511 lnk 06

ENABLE AND DISABLE TIMES



NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH

2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ORDERING INFORMATION

3511 ldrw 08

Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet in order to improve design or performance and to supply the best possible product.

Integrated Device Technology, Inc.

2975 Stender Way, Santa Clara, CA 95054-3090

Telephone: (408) 727-6116

FAX 408-492-8674