

Preliminary Specifications

FEATURES:

- High Gain:
 - Typically 29 dB gain across 2.4–2.5 GHz over temperature 0°C to +85°C
- High linear output power:
 - >26 dBm P1dB
 - Please refer to "Absolute Maximum Stress Ratings" on page 4
 - Meets 802.11g OFDM ACPR requirement up to 22 dBm
 - ~2.5% added EVM up to 19 dBm for 54 Mbps 802.11g signal
 - Meets 802.11b ACPR requirement up to 22 dBm
- High power-added efficiency/Low operating current for both 802.11g/b applications
 - $\sim 22\%/220 \text{ mA } @ P_{OUT} = 22 \text{ dBm for } 802.11g$
 - $\sim 21\%/230 \text{ mA}$ @ $P_{OUT} = 22 \text{ dBm for } 802.11 \text{ b}$
- Single-pin low I_{REF} power-up/down control
 - I_{RFF} <2 mA
- · Low idle current
 - ~70 mA I_{CQ}
- High-speed power-up/down
 - Turn on/off time (10%-90%) <100 ns
 - Typical power-up/down delay with driver delay included <200 ns

- · High temperature stability
 - ~1 dB gain/power variation between 0°C to +85°C
- Low shut-down current (< 0.1 μA)
- Excellent On-chip power detection
 - <+/- 0.3dB variation between 0°C to +85°C
 - <+/- 0.4dB variation with 2:1 VSWR mismatch
 - <+/- 0.3dB variation Ch1 through Ch14</p>
- 20 dB dynamic range on-chip power detection
- Simple input/output matching
- Packages available
 - 16-contact VQFN 3mm x 3mm
- All non-Pb (lead-free) devices are RoHS compliant

APPLICATIONS:

- WLAN (IEEE 802.11g/b)
- Home RF
- · Cordless phones
- 2.4 GHz ISM wireless equipment

PRODUCT DESCRIPTION

The SST12LP07 is a versatile power amplifier based on the highly-reliable InGaP/GaAs HBT technology.

The SST12LP07 can be easily configured for high-power applications with good power-added efficiency while operating over the 2.4- 2.5 GHz frequency band. This device typically provides 29 dB gain with 22% power-added efficiency @ P_{OUT} = 22 dBm for 802.11g and 21% power-added efficiency @ P_{OUT} = 22 dBm for 802.11b.

The SST12LP07 has excellent linearity, typically ~2.5% added EVM at 19 dBm output power which is essential for 54 Mbps 802.11g/n operation while meeting 802.11g spectrum mask at 22 dBm. The SST12LP07 can also be configured for high-efficiency operation, typically 17 dBm linear 54 Mbps 802.11g output power at 85 mA total power consumption. High-efficiency operation is desirable in embedded applications such as in hand-held units.

The SST12LP07 also features easy board-level usage along with high-speed power-up/down control through a single combined reference voltage pin. Ultra-low reference current (total I_{RFF} ~2 mA) makes the SST12LP07 controlla-

ble by an on/off switching signal directly from the baseband chip. These features coupled with low operating current make the SST12LP07 ideal for the final stage power amplification in battery-powered 802.11g/b WLAN transmitter applications.

The SST12LP07 has an excellent on-chip, single-ended power detector, which features wide-range (~20 dB) with dB-wise linearization and high stability over temperature (< +/-0.3 dB 0°C to +85°C), frequency (<+/-0.3 dB across Channels 1 through 14), and output load (<+/-0.4 dB with 2:1 output VSWR all phases). The excellent on-chip power detector provides a reliable solution to board-level power control.

The SST12LP07 is offered in a 16-contact VQFN package. See Figure 2 for pin assignments and Table 1 for pin descriptions.

Preliminary Specifications

FUNCTIONAL BLOCKS

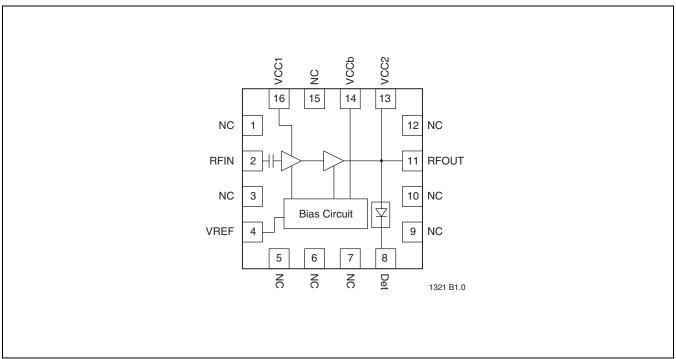


FIGURE 1: Functional Block Diagram

PIN ASSIGNMENTS

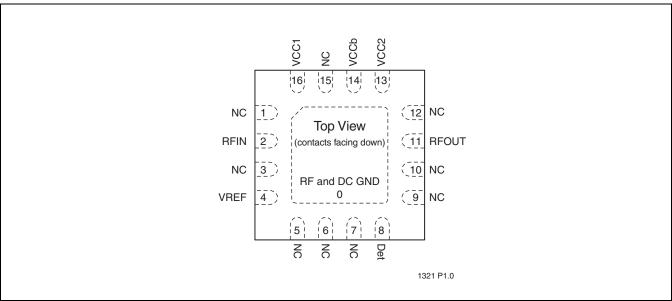


FIGURE 2: Pin Assignments for 16-contact VQFN

PIN DESCRIPTIONS

TABLE 1: Pin Description

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		The center pad should be connected to RF ground with several low inductance, low resistance vias
NC	1	No Connection		Unconnected pin
RFIN	2		I	RF input, DC decoupled
NC	3	No Connection		Unconnected pin
VREF	4		ı	1 st and 2 nd stage idle current control
NC	5	No Connection		Unconnected pin
NC	6	No Connection		Unconnected pin
NC	7	No Connection		Unconnected pin
Det	8		0	On-chip power detector
NC	9	No Connection		Unconnected pin
NC	10	No Connection		Unconnected pin
RFOUT	11		0	RF output
NC	12	No Connection		Unconnected pin
VCC2	13	Power Supply	PWR	Power supply, 2 nd stage
VCCb	14	Power Supply	PWR	Power supply, bias circuit
NC	15	No Connection		Unconnected pin
VCC1	16	Power Supply	PWR	Power supply, 1st stage

1. I=Input, O=Output

T1.0 1321

Preliminary Specifications

ELECTRICAL SPECIFICATIONS

The AC and DC specifications for the power amplifier interface signals. Refer to Table 2 for the DC voltage and current specifications. Refer to Figures 3 through 11 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pin 2 (P _{IN})	+5 dBm
Average output power (P _{OUT}) ¹	+26 dBm
Supply Voltage at pins 13, 14, and 16 (V _{CC})	0.3V to +4.0V
Reference voltage to pin 4 (V _{REF})	0.3V to +3.3V
DC supply current (I _{CC})	400 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	

^{1.} Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommended. Exceeding the maximum rating of average output power could cause permanent damage to the device.

Operating Range

Range	Ambient Temp	V _{CC}
Industrial	-40°C to +85°C	3.3V

TABLE 2: DC Electrical Characteristics

Symbol	Parameter	Min.	Тур	Max.	Unit	Test Conditions
V _{CC}	Supply Voltage at pins 13, 14, 16	3.0	3.3	3.6	V	
I _{CC}	Supply Current					
	for 802.11g, 22 dBm		220		mA	
	for 802.11b, 22 dBm		230		mA	
Icq	Idle current for 802.11g to meet EVM <2.5% @ 19 dBm		70		mA	
l _{OFF}	Shut down current			0.1	μΑ	
V_{REG}	Reference Voltage for, with 110Ω resistor	2.75	2.85	2.95	V	

T2.0 1321

Preliminary Specifications

TABLE 3: AC Electrical Characteristics for Configuration

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2400		2485	MHz
P _{OUT}	Output power				
	@ PIN = -6 dBm 11b signals	22			dBm
	@ PIN = -7 dBm 11g signals	21			dBm
G	Small signal gain	28	29		dB
G _{VAR1}	Gain variation over band (2400~2485 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (20 MHz)		0.2		dB
ACPR	Meet 11b spectrum mask	22			dBm
	Meet 11g OFDM 54 Mbps spectrum mask	22			dBm
Added EVM	@ 19 dBm output with 11g OFDM 54 Mbps signal		2.5		%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without external filters		-40		dBc

T3.2 1321

TYPICAL PERFORMANCE CHARACTERISTICS

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, unless otherwise specified

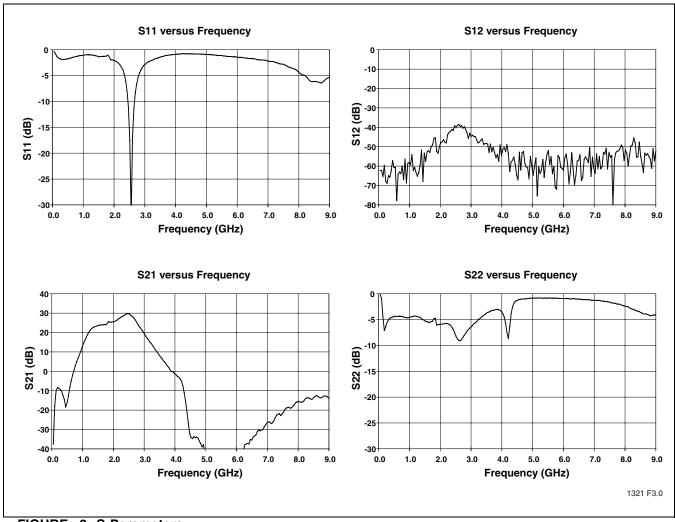


FIGURE 3: S-Parameters

TYPICAL PERFORMANCE CHARACTERISTICS

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, 54 Mbps 802.11g OFDM signal

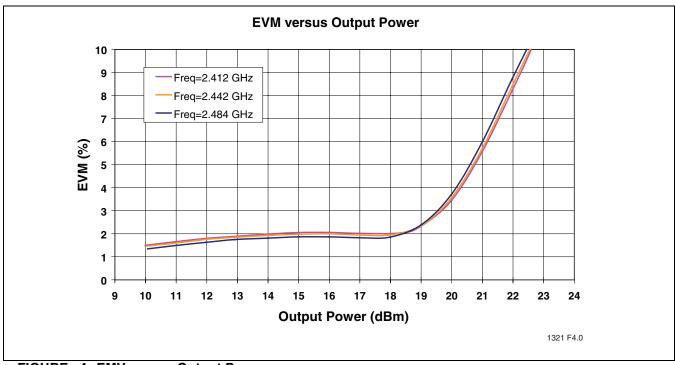


FIGURE 4: EMV versus Output Power



FIGURE 5: Power Gain versus Output Power

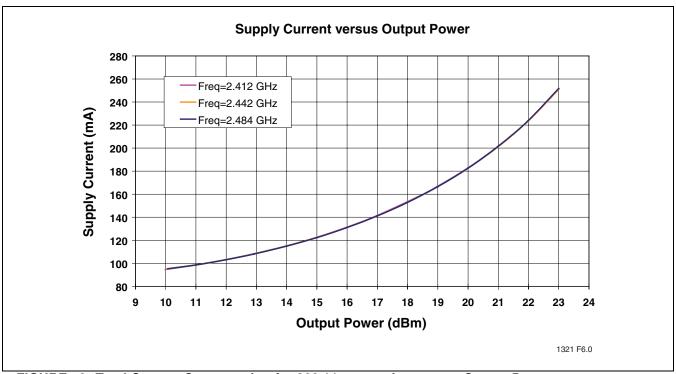


FIGURE 6: Total Current Consumption for 802.11g operation versus Output Power

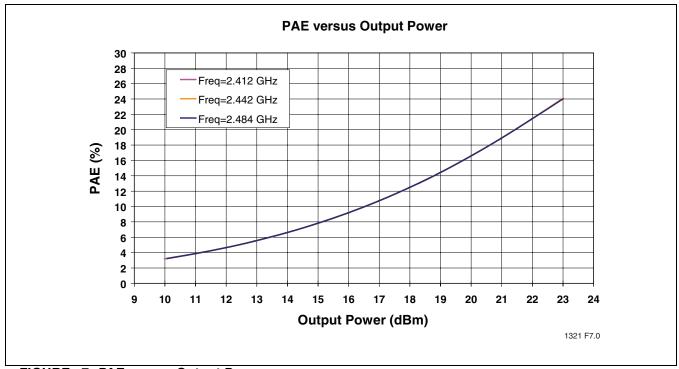


FIGURE 7: PAE versus Output Power

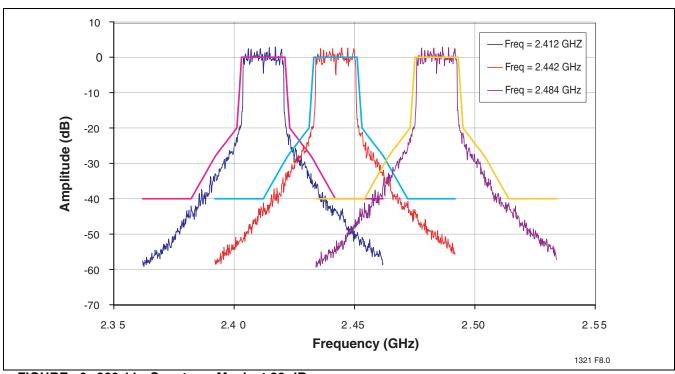


FIGURE 8: 802.11g Spectrum Mask at 22 dBm

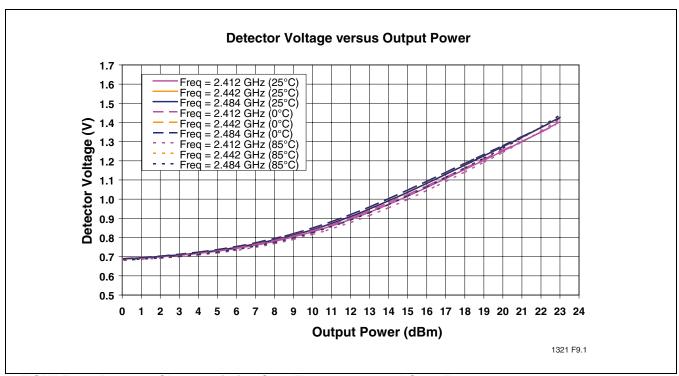


FIGURE 9: Detector Characteristics Over Temperature and Over Frequency

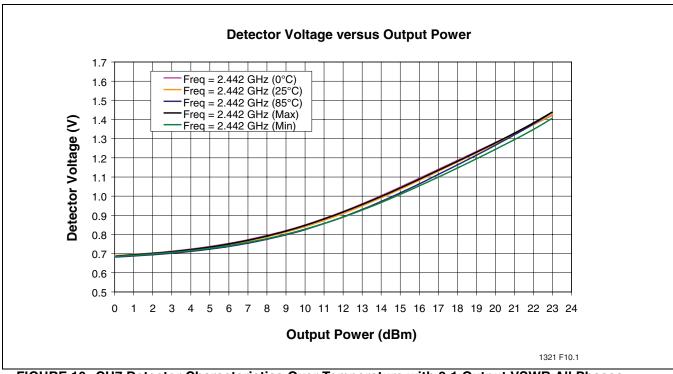


FIGURE 10: CH7 Detector Characteristics Over Temperature with 2:1 Output VSWR All Phases

Test Conditions: V_{CC} = 3.3V, T_A = 25°C, 1 Mbps 802.11B CCK signal

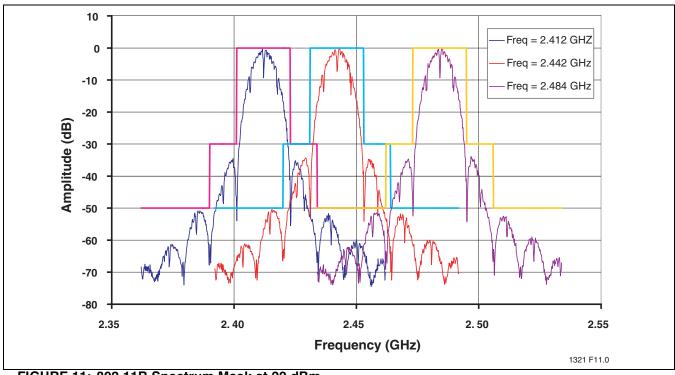


FIGURE 11: 802.11B Spectrum Mask at 22 dBm

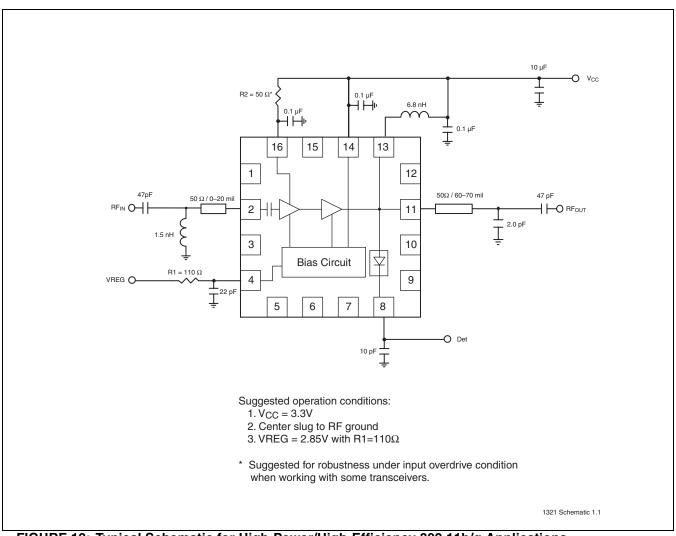
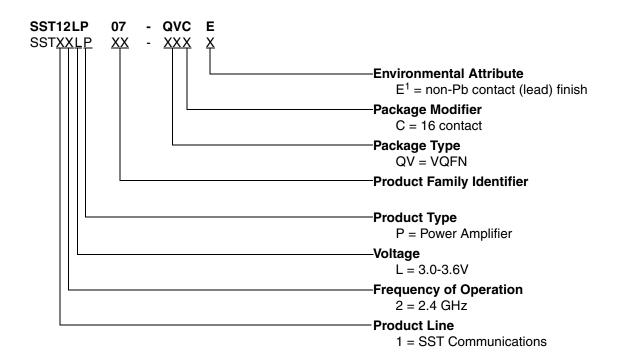



FIGURE 12: Typical Schematic for High-Power/High-Efficiency 802.11b/g Applications

Preliminary Specifications

PRODUCT ORDERING INFORMATION

Valid combinations for SST12LP07

SST12LP07-QVCE

SST12LP07 Evaluation Kits

SST12LP07-QVCE-K

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".

PACKAGING DIAGRAMS

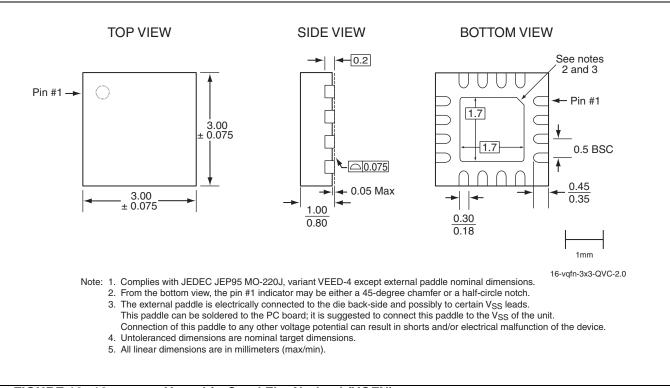


FIGURE 13: 16-contact Very-thin Quad Flat No-lead (VQFN)
SST Package Code: QVC

TABLE 4: Revision History

Revision	Description	Date
00	Initial release of data sheet	May 2006

Preliminary Specifications

CONTACT INFORMATION

Marketing

SST Communications Corp.

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600

Fax: 310-577-3605

Sales and Marketing Offices

NORTH AMERICA

Silicon Storage Technology, Inc.

Les Crowder

Technical Sales Support - North America

Tel: 949-495-6437 Fax: 949-495-6364

E-mail: lcrowder@sst.com

EUROPE

Silicon Storage Technology Ltd.

Ralph Thomson

Director, Field Applications Engineering

Mark House

9-11 Queens Road

Hersham KT12 5LU UK Tel: +44 (0) 1869 321 431

Cell: +44 (0) 7787 508 919 E-mail: rthomson@sst.com

JAPAN

SST Japan

Kiyomi Akaba Country Manager

9F Toshin-Tameike Bldg, 1-1-14 Akasaka,

Minato-ku, Tokyo, Japan 107-0052

Tel: (81) 3-5575-5515 Fax: (81) 3-5575-5516 Email: kakaba@sst.com

ASIA PACIFIC NORTH

SST Macao

H. H. Chang

Senior Director, Sales

Room N, 6th Floor,

Macao Finance Center, No. 202A-246,

Rua de Pequim, Macau Tel: (853) 706-022 Fax: (853) 706-023 E-mail: hchang@sst.com

ASIA PACIFIC SOUTH

SST Communications Co.

Sunny Tzeng Country Manager 16F-6, No. 75, Sec.1,

Sintai 5th Rd

Sijhih City, Taipei County 22101, Taiwan, R.O.C.

Tel: +886-2-8698-1168 Fax: +886-2-8698-1169 E-mail: stzeng@sst.com

KOREA

SST Korea

Charlie Shin

Country Manager

Rm# 1101 DonGu Root Bldg, 16-2 Sunae-Dong,

S71321-00-000

Bundang-Gu, Sungnam, Kyunggi-Do

Korea, 463-020

Tel: (82) 31-715-9138 Fax: (82) 31-715-9137 Email: cshin@sst.com

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com

©2006 Silicon Storage Technology, Inc.