

SST108 N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix SST108

This n-channel JFET is optimised for low noise high performance switching. The part is particularly suitable for use in low noise audio amplifiers. The SOT-23 package is well suited for cost sensitive applications and mass production.

(See Packaging Information).

SST108 Benefits:

- Low On Resistance
- Low insertion loss
- Low Noise

SST108 Applications:

- Analog Switches
- Commutators
- Choppers

FEATURES			
DIRECT REPLACEMENT FOR SILICONIX SST108			
LOW ON RESISTANCE	$r_{DS(on)} \le 8\Omega$		
FAST SWITCHING $t_{(on)} \le 4ns$			
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless	ss otherwise noted)		
Maximum Temperatures			
Storage Temperature	-55°C to +150°C		
Operating Junction Temperature	-55°C to +150°C		
Maximum Power Dissipation			
Continuous Power Dissipation	350mW		
MAXIMUM CURRENT			
Gate Current (Note 1)	50mA		
MAXIMUM VOLTAGES			
Gate to Drain Voltage	V _{GDS} = -25V		
Gate to Source Voltage	V _{GSS} = -25V		

SST108 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

JOI TOO EEECII	331100 ELECTRICAL CHARACTERISTICS & 25 C (diffess otherwise noted)						
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS	
BV_{GSS}	Gate to Source Breakdown Voltage	-25				$I_{G} = 1\mu A$, $V_{DS} = 0V$	
$V_{GS(off)}$	Gate to Source Cutoff Voltage	-3		-10		$V_{DS} = 5V$, $I_{D} = 1\mu A$	
$V_{GS(F)}$	Gate to Source Forward Voltage		0.7		V	$I_G = 1mA$, $V_{DS} = 0V$	
I _{DSS}	Drain to Source Saturation Current (Note 2)	80			mA	$V_{DS} = 15V, V_{GS} = 0V$	
I _{GSS}	Gate Reverse Current		-0.01	-3		$V_{GS} = -15V, \ V_{DS} = 0V$	
I _G	Gate Operating Current		-0.01		nA	$V_{DG} = 10V, I_D = 10mA$	
I _{D(off)}	Drain Cutoff Current		0.02	3		$V_{DS} = 5V, V_{GS} = -10V$	
r _{DS(on)}	Drain to Source On Resistance	-		8	Ω	$V_{GS} = 0V, \ V_{DS} \le 0.1V$	

SST108 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

	=====					
SYMBOL	CHARACTERISTIC CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
g _{fs}	Forward Transconductance		17	-	mS	$V_{DS} = 5V, I_D = 10 \text{mA}, f = 1 \text{kHz}$
g _{os}	Output Conductance		0.6			
r _{DS(on)}	Drain to Source On Resistance			8	Ω	$V_{GS} = 0V$, $I_0 = 0A$, $f = 1kHz$
C _{iss}	Input Capacitance		60			$V_{DS} = 0V, V_{GS} = 0V, f = 1MHz$
C _{rss}	Reverse Transfer Capacitance		11		pF	$V_{DS} = 0V$, $V_{GS} = -10V$, $f = 1MHz$
e _n	Equivalent Noise Voltage		3.5		nV/√Hz	$V_{DS} = 5V$, $I_{D} = 10 \text{mA}$, $f = 1 \text{kHz}$

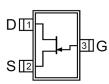
SST108 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC		UNITS	CONDITIONS			
t _{d(on)}	Turn On Time	3		V _{DD} = 1.5V			
t _r	Turn On Rise Time	1	ns	$V_{GS}(H) = 0V$			
t _{d(off)}	Turn Off Time	4	113	See Switching Circuit			
t _f	Turn Off Fall Time	18					

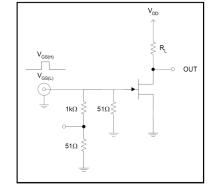
Note 1 - Absolute maximum ratings are limiting values above which SST108 serviceability may be impaired. Note 2 − Pulse test: PW≤ 300 µs, Duty Cycle ≤ 3%

SST108 SWITCHING CIRCUIT PARAMETERS

V _{GS(L)}	-12V
R _L	150Ω
I _{D(on)}	10mA


Micross Components Europe

Available Packages:


SST108 in SOT-23 SST108 in bare die.

Please contact Micross for full package and die dimensions

SOT-23 (Top View)

SWITCHING TEST CIRCUIT

micross

Tel: +44 1603 788967

Email: chipcomponents@micross.com
Web: http://www.micross.com/distribution