

Vishay General Semiconductor

High-Voltage Schottky Rectifier

High Barrier Technology for Improved High Temperature Performance

PRIMARY CHARACTERISTICS				
I _{F(AV)}	1.0 A			
V_{RRM}	90 V, 100 V			
I _{FSM}	50 A			
V_{F}	0.62 V			
I _R	1.0 μΑ			
T _J max.	175 °C			

FEATURES

COMPLIANT

- · Guardring for overvoltage protection
- · Low power losses and high efficiency
- Low forward voltage drop
- Very low leakage current
- High forward surge capability
- · High frequency operation
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in middle voltage high frequency inverters, freewheeling, dc-to-dc converters and polarity protection applications.

MECHANICAL DATA

Case: DO-204AL (DO-41)

Epoxy meets UL 94V-0 flammability rating

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD22-B102

E3 suffix for consumer grade, meets JESD 201 class 1A whisker test, HE3 suffix for high reliability grade (AEC Q101 qualified), meets JESD 201 class 2 whisker test

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	SB1H90	SB1H100	UNIT	
Maximum repetitive peak reverse voltage	V _{RRM}	90 100		V	
Maximum RMS voltage	V _{RMS}	63 70		V	
Maximum DC blocking voltage	V _{DC}	90	100	V	
Maximum average forward rectified current	I _{F(AV)}	1.0		А	
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	50		А	
Voltage rate of change (rated V _R)	dV/dt	10 000		V/µs	
Peak repetitive reverse surge current at $t_p = 2.0 \mu s$, 1 kHz	I _{RRM}	1.0		Α	
Maximum operating junction temperature	T_J	175		°C	
Storage temperature range	T _{STG}	- 55 to + 175			

Document Number: 88716 Revision: 19-May-08

SB1H90 & SB1H100

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	TEST CONDITIONS		SYMBOL	SB1H90 SB1H100		UNIT
Maximum instantaneous forward voltage (1)	$I_F = 1.0 \text{ A}$ $I_F = 1.0 \text{ A}$ $I_F = 2.0 \text{ A}$ $I_F = 2.0 \text{ A}$	$T_{J} = 25 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$ $T_{J} = 25 ^{\circ}\text{C}$ $T_{J} = 125 ^{\circ}\text{C}$	V_{F}	0.77 0.62 0.86 0.70		٧
Maximum reverse current at rated V _R ⁽²⁾		$T_J = 25 ^{\circ}\text{C}$ $T_J = 125 ^{\circ}\text{C}$	I _R	1.0 0.5		μA mA

Notes:

(1) Pulse test: 300 ms pulse width, 1 % duty cycle

(2) Pulse test: Pulse width \leq 40 ms

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL SB1H90 SB1H100 U		UNIT		
Maximum thermal resistance (1)	$R_{ hetaJA} \ R_{ hetaJL}$	57 15		°C/W	

Note:

(1) P.C.B. mounted with 0.2 x 0.2" (5.0 x 5.0 mm) copper pad areas

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
SB1H100-E3/54	0.34	54	5500	13" diameter paper tape and reel		
SB1H100-E3/73	0.34	73	3000	Ammo pack packaging		
SB1H100HE3/54 ⁽¹⁾	0.34	54	5500	13" diameter paper tape and reel		
SB1H100HE3/73 ⁽¹⁾	0.34	73	3000	Ammo pack packaging		

Note:

(1) Automotive grade AEC Q101 qualified

RATINGS AND CHARACTERISTICS CURVES

 $(T_A = 25 \, ^{\circ}C \text{ unless otherwise noted})$

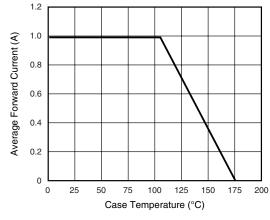


Figure 1. Forward Current Derating Curve

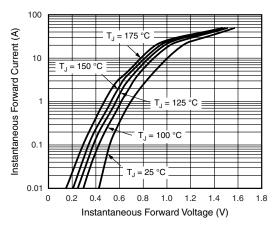


Figure 2. Typical Instantaneous Forward Characteristics

Vishay General Semiconductor

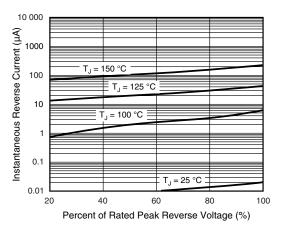


Figure 3. Typical Reverse Characteristics

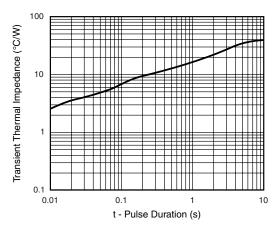


Figure 5. Typical Transient Thermal Impedance

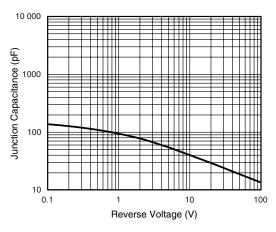
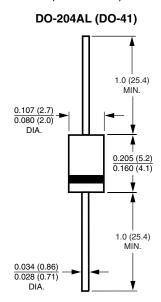



Figure 4. Typical Junction Capacitance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Document Number: 88716 Revision: 19-May-08 For technical questions within your region, please contact one of the following: PDD-Americas@vishay.com, PDD-Asia@vishay.com, PDD-Europe@vishay.com

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com