Version : A.002 Issue Date : 2008/12/19 File Name : SP-DD331-A.002.doc Total Pages : 11

4-Channel Flexible LED Pre-Driver

新行市科學園區展業一路9號7 棲之1 SILICON TOUCH TECHNOLOGY INC. 9-7F-1, Prosperity Road I, Science Based Industrial Park, Hsin-Chu, Taiwan 300, R.O.C. Tel : 886-3-5645656 Fax : 886-3-5645626

4-Channel Flexible LED Pre-Driver

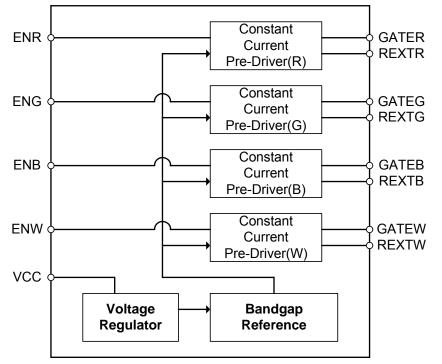
General Description

DD331 is a 4-channel LED pre-driver. It could provide constant-current to drive LED with four N-type MOSFETs and external resistors. The four output enable terminals are designed to drive LED with PWM functions. The maximum voltage and current in LED string are determined by specification of N-type MOSFET.

Features

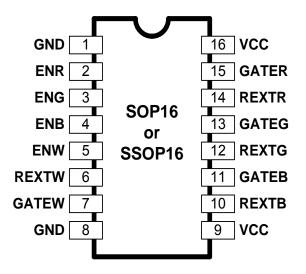
- Four independent LED output channels enable terminals, and current adjustment.
- Flexible in system design: Maximum constant current output (ILED), maximum sinking output voltage (VLED), and minimum output voltage are determined by the characteristic of N-type MOSFET
- Fast dimming frequency (determined by gate capacitance of MOSFET)
- ♦ Supply voltage range: 5V ~ 18V

Applications


- LED architectural or entertainment lighting
- LED general or specialty illumination
- LED backlighting applications

Package Types

SOP16, SSOP16



Block Diagram

Pin Connection

SOP16 / SSOP16 (Top View)

DD331

Pin Description

PIN NAME	FUNCTION	SOP16 / TSSOP16
		pin number
GND	Ground terminal	1,8
VCC	Power supply terminal	9,16
ENR		2
ENG	Output ourrent onable terminals	3
ENB	Output current enable terminals	4
ENW		5
GATER		15
GATEG	External N-type MOSFET gate	13
GATEB	connection terminals	11
GATEW		7
REXTR		14
REXTG	External resistors connected between REXT and	12
REXTB	GND for driver current value setting.	10
REXTW		6

Maximum Ratings (Ta=25°C, Tj(max) = 150°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VCC	-0.3 ~ 18.0	
Input Voltage	VIN	-0.3 ~ VCC+0.3	V
Enable Voltage	VEN ^{*1}	-0.3 ~ 18.0	
GND Terminal Current	Ignd	0.5	А
	D.I.	1.7 (SOP16)	W
Power Dissipation	Pd	1.5 (SSOP16)	vv
Thermal Desistance (Junction to Air)	D^{*}	72.1 (SOP16)	°C/W
Thermal Resistance (Junction to Air)	Rth(j-a)*2	82 (SSOP16)	°C/W
Operating Temperature	Тор	-40 ~ 85	°C
Storage Temperature	Tstg	-55 ~ 150	-C

^{*1} VEN could not higher than VCC. ^{*2} Base on JEDEC high conductivity test board (4-layer) simulation.

Recommended Operating Condition

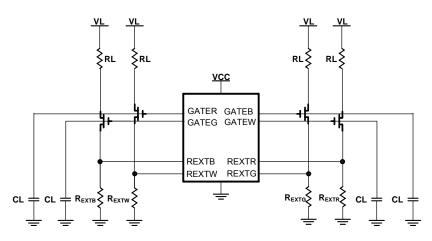
CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
Supply Voltage	VCC		5		18	V	
Input Enable Voltage	VIH	VCC = 5V ~ 18V	3.5		VCC	v	
input Enable Voltage	VIL	VCC - 5V ~ 18V	-0.3		1	V	

Electrical Characteristics (Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Enable Voltage "H" Level	Ven(IH)	VCC = 5 V ~ 18 V	3.5		VCC	V
Input Enable Voltage "L" Level	VEN(IL)		-0.3	_	1	v
Vrext Skew (Channel-to-Channel)	IOL1	VCC = 18V Rext = 100Ω			±3	
Vrext Skew (Chip-to-Chip)	IOL2	External N-mos : VN0606 Vout = 18V			±6	%
Supply Voltage Regulation	% / VCC	VCC = 5V ~ 18V		0.1		
Supply Current	IDD1	VCC = 18V Rext = 100Ω External N-mos : VN0606 Vout = 18V			4.0	mA

AC Characteristics (VCC = 5~18V, Ta = 25°C unless otherwise noted)

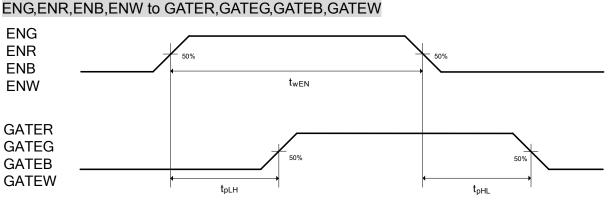
CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
ENR,ENG,ENB,ENW Pulse Width	twEN	Rext = 100Ω External N-mos : VN0606	1			ms


^{*1} The external N-mos VN0606 is just for reference, users can choose other kind external N-mos for their application.

CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	ENR-to-GATER		VIH = VCC				
Propagation Delay	ENG-to-GATEG	tpLH	VIL = GND		20		
('L to 'H')	ENR-to-GATEB	ιρεπ	Rrext =5 Ω	_	20		
	ENW-to-GATEW		VL = 18 V				
	ENR-to-GATER		RL = 0.18 KΩ				ns
Propagation Delay ('H' to 'L')	ENG-to-GATEG	to I II	CL = 13 pF		125		
	ENR-to-GATEB	tpHL	External N-mos :	_			
	ENW-to-GATEW		VN0606				

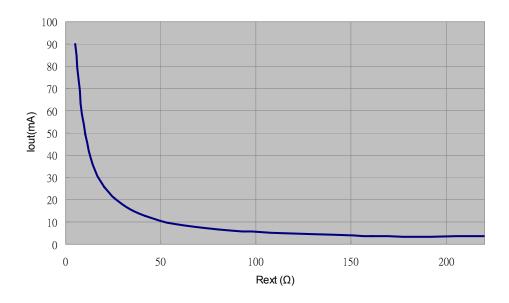
Switching Characteristics (VCC = 18V, Ta = 25°C unless otherwise noted)

Switching Characteristics (VCC = 5V, Ta = 25°C unless otherwise noted)


CHARACTERISTIC		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	ENR-to-GATER		VIH = VCC				
Propagation Delay	ENG-to-GATEG	tpLH	VIL = GND		25		
('L to 'H')	ENR-to-GATEB	uperi	Rrext = 5 Ω		25		
	ENW-to-GATEW		VL = 18 V				
	ENR-to-GATER		RL = 0.18 KΩ				ns
Propagation Delay	ENG-to-GATEG		CL = 13 pF		124		
('H' to 'L')	ENR-to-GATEB	tpHL	External N-mos :				
	ENW-to-GATEW	1	VN0606				

Switching Characteristics Test Circuit

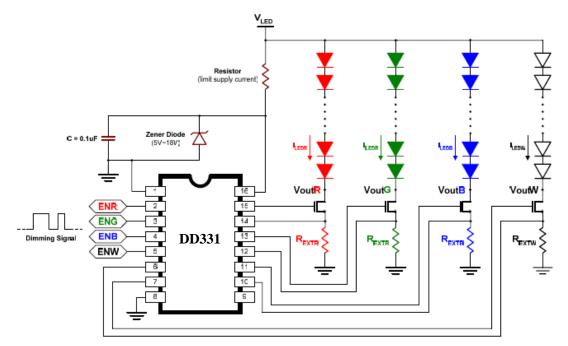
Timing Diagram



Constant-Current Output

The constant-current value of each output channels is set by a N-type MOSFET and an external resistor connected between the REXT(R, G, B, W) pin and GND individually. Varying the resistor value can adjust the current. Notice that the output current is a little increasing or decreasing until the device temperature and ambient temperature are balance. Approximate output current value can be calculated by following equation:

I	lout	5	10	20	40	80	160	220
	Μ	883.1	967.2	990	10128	1044.6	1115.6	1478.8


lout = 0.52 / Rext * M

High CONSTANT CURRENT LED DRIVERS

Typical Application

Application Notice

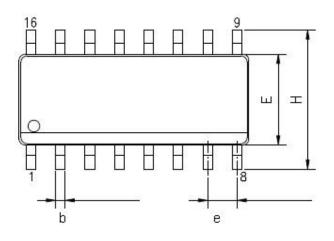
Notice the Rext applies to lower than 5 Ω , the wire resistance(Rwire) will affect lout a lot. For example, when Rext=5 Ω lout= 104mA, if Rwire=1 Ω , than lout will decrease 1.96%. Due to large current flow through rext, it needs high power resistor to apply to prevent element burn out issue.

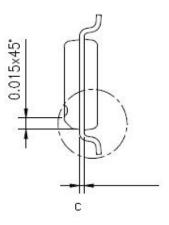
Dissipation Ratings

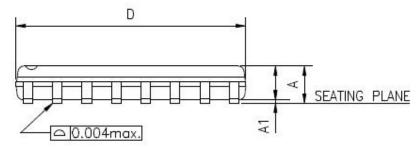
PACKAGE	POWER DISSAPATION (Tj_max=150 °C)	THERMAL RESISTANCE (Rth _(junction-to-air) , Ta=25°C)
SOP16	1.7 W	72.1 °C/W
SSOP16	1.5 W	82 °C/W

Power Dissipation

Notice that the power dissipation of a semiconductor chip is limited to its package and ambient temperature, in which the device requires the maximum output current calculated for given operating conditions. The maximum allowable power consumption can be calculated by the following equation:

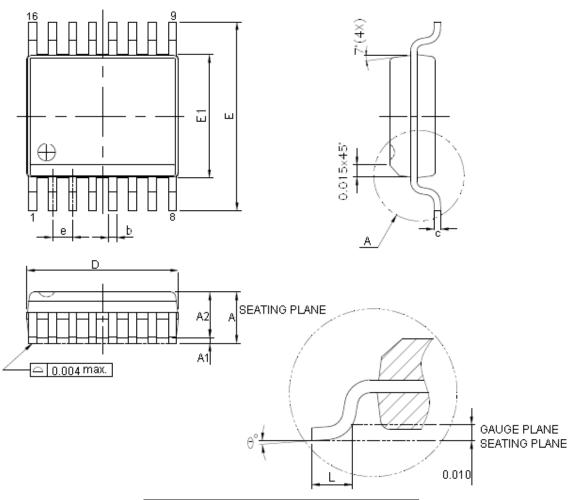

 $Pd(max)(Watt) = \frac{Tj(junction \ temperature)(max)(^{\circ}C) - Ta(ambient \ temperature)(^{\circ}C)}{Rth(junction- \ to- \ air \ thermal \ resistance)(^{\circ}C/Watt)}$


High CONSTANT CURRENT LED DRIVERS



Package Outline Dimension

SOP16



SOP16-150m	SOP16-150mil				
SYMBOLS	MIN.	TYP.	MAX.		
A	1.346	-	1.753		
A1	0.051	-	0.250		
b	0.330	-	0.510		
С	0.190	-	0.250		
D	9.800		10.008		
E	3.800		4.000		
е		1.270 B	SC		
Н	5.791	-	6.200		
L	0.400	-	1.270		
θ°	0	-	8		

Package Outline Dimension

SSOP16

P16	mm	
MIN.	TYP.	MAX.
1.346	-	1.753
0.102	-	0.254
1.245	-	1.499
0.203	-	0.305
0.178	-	0.254
4.801	4.902	5.004
5.791	5.994	6.198
(0.635 BSC	;
3.810	3.912	3.988
0.406	-	1.270
0	-	8
	MIN. 1.346 0.102 1.245 0.203 0.178 4.801 5.791 0.406	MIN. TYP. 1.346 - 0.102 - 1.245 - 0.203 - 0.178 - 4.801 4.902 5.791 5.994 0.635 BSC 3.810 3.912 0.406 -

DD331

High CONSTANT CURRENT LED DRIVERS

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.