TOSHIBA RISC PROCESSOR

# **TMPR3927F**

## (32-bit RISC MICROPROCESSOR)

### 1. GENERAL DESCRIPTION

The TMPR3927F (to be called "TX3927" hereinafter) is a standard micro controller of the 32-bit RISC Microprocessor TX39 family. The TX3927 uses the TX39/H2 processor core as the CPU. The TX39/H2 processor core is a RISC CPU core Toshiba developed based on the R3000A architecture of MIPS Technologies, Inc. The TX3927 has built-in peripheral circuits which include memory controllers, a PCI controller, DMA controller, serial and parallel ports, and timer/counters.

## 2. FEATURES

#### TX39/H2 Processor Core

- The TX39/H2 is a high-performance 32-bit microprocessor core developed by Toshiba based on the R3000A<sup>™</sup> architecture.
- 8kbytes of Instruction cache (2-way set associative)
- 4kbytes of Data cache (2-way set associative)
- Cache support of burst refill and cache locking functions.
- Supports Critical Word First Mode
- Incorporates MMU with translation lookaside buffer (TLB)
- Single cycle, 32 x 32 bit MAC unit for DSP functions
- Built-in Debug Support Unit (DSU)

#### **D** SDRAM Controller

- Supports 8 channels of SDRAM, Flash (DIMM), SGRAM, or SMROM memory
- Supports 16M/64M/128M/256M bit SDRAM with 2/4 bank size availability
- Support of 16/32-bit static bus sizing on a per channel basis
- Supports Single Data Rate (SDR) SDRAM
- Supports JEDEC standard 100-pin or 168-pin DIMM sockets for SDRAM
- Supports JEDEC standard 100-pin DIMM sockets for Flash

#### ROM Controller

- Supports 8 channels of ROM, Page Mode ROM, Mask ROM, EPROM, E<sup>2</sup>PROM, SRAM, and Flash Memory and I/O devices.
- Supports memory sizes of 1M Byte to 1GByte per channel in 32-bit mode, and sizes of 1M Byte to 512M Byte per channel in 16-bit mode

# TOSHIBA

TENTATIVE

• Supports independent per channel 32/16-bit static bus sizing

#### **Timer/Counter**

- 3-channel 24-bit up-counter
- Interval and Watchdog timer modes
- Support of up to 3 external (multiplexed) timer output pins
- Support of external input clock

#### Interrupt Controller

- Priority process of 8 internal and up to 6 external interrupt sources
- Support of Non Maskable interrupt (NMI)

### PCI Controller

- Full compliance with PCI Local Bus Specification Revision 2.1
- 32-bit PCI interface at 33MHz
- Supports both target and initiator mode
- Supports zero-wait-state read and write burst transfer for target mode
- FIFO to minimize initial latency requirements to and from memory controller
- Supports auto PCI bus to local bus address space mapping
- Arbiter function can be enabled/disabled
- External interrupt function capability

## Direct Memory Access Controller (DMAC)

- Independent 4-channel DMA
- Supports 8/16/32-bit wide I/O devices
- Supports Internal/External transfer requests
- Supports both Dual Address and Single Address transfer modes
- Support of word aligned memory to memory transfers using 4-word/8-word burst reads and writes

#### Serial I/O Ports

- Two-channel UART
- Baud rate generator and modem flow control support
- Supports 8-bit x 8 Transmitter FIFO
- Supports 13-bit x 16 (data 8-bits and status 5 -bits) Receiver FIFO

#### Parallel I/O Ports

- Supports up to 16 bi-directional I/O pins that can be read regardless of direction or mode
- Independent selection of direction of pins and choice of totem-pole or open-drain outputs
- Support of 16-bit Flag register available as read/write register or Flag register
- Power Supply: 2.5V (internal) / 3.3V (I/O)
- Operating Frequency: 133MHz
- Package Type: 240-pin Plastic QFP

"MIPS" is the registered trade-mark of MIPS Technologies, Inc.

• The information contained herein is subject to change without notice.

•The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

<sup>•</sup>TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook

### 3. SYSTEM CONFIGURATION

### 3.1 TMPR3927F Block Diagram



\*Note: This diagram shows the full set of functional signal connections. Due to pin multiplexing, not all of these signals will be available.

# 4. PIN DESCRIPTION

## 4.1 PIN OUT (240-pin PQFP)

| Pin No. | Signal   | Pin No. | Signal    | Pin No. | Signal    | Pin No. | Signal    |
|---------|----------|---------|-----------|---------|-----------|---------|-----------|
| 1       | VSS2     | 31      | VSS2      | 61      | VSS       | 91      | VSS2      |
| 2       | DATA[30] | 32      | VSS       | 62      | PCIAD[29] | 92      | DEVSEL*   |
| 3       | DATA[23] | 33      | VDDS      | 63      | PCIAD[28] | 93      | STOP*     |
| 4       | DATA[31] | 34      | RTS*[1]   | 64      | PCIAD[27] | 94      | PERR*     |
| 5       | CE*[1]   | 35      | GPCST[2]  | 65      | VSS       | 95      | SERR*     |
| 6       | VSS      | 36      | GPCST[1]  | 66      | PCIAD[26] | 96      | PAR       |
| 7       | CE*[0]   | 37      | GPCST[0]  | 67      | PCIAD[25] | 97      | C_BE[1]   |
| 8       | ACE*     | 38      | GDCLK     | 68      | PCIAD[24] | 98      | VSS       |
| 9       | ADDR[4]  | 39      | GSDI      | 69      | VSS       | 99      | PCIAD[15] |
| 10      | ADDR[3]  | 40      | GDRESET*  | 70      | C_BE[3]   | 100     | VDDS      |
| 11      | ADDR[2]  | 41      | GDBGE*    | 71      | VDDS      | 101     | PCIAD[14] |
| 12      | SYSCLK   | 42      | PCICLK[3] | 72      | IDSEL     | 102     | PCIAD[13] |
| 13      | VDD2     | 43      | VDDS      | 73      | PCIAD[23] | 103     | VSS       |
| 14      | BWE*[3]  | 44      | VSS       | 74      | PCIAD[22] | 104     | PCIAD[12] |
| 15      | BWE*[2]  | 45      | PCICLK[2] | 75      | VSS       | 105     | PCIAD[11] |
| 16      | VSS      | 46      | PCICLK[1] | 76      | PCIAD[21] | 106     | PCIAD[10] |
| 17      | BWE*[1]  | 47      | PCICLK[0] | 77      | PCIAD[20] | 107     | VSS       |
| 18      | BWE*[0]  | 48      | VSS       | 78      | PCIAD[19] | 108     | PCIAD[9]  |
| 19      | OE*      | 49      | GNT[3]    | 79      | VSS       | 109     | PCIAD[8]  |
| 20      | SWE*     | 50      | GNT[2]    | 80      | PCIAD[18] | 110     | VDDS      |
| 21      | SCLK     | 51      | GNT[1]    | 81      | PCIAD[17] | 111     | C_BE[0]   |
| 22      | RXD[0]   | 52      | GNT[0]    | 82      | VDDS      | 112     | VSS       |
| 23      | TXD[0]   | 53      | REQ[3]    | 83      | PCIAD[16] | 113     | PCIAD[7]  |
| 24      | RTS*[0]  | 54      | REQ[2]    | 84      | VSS       | 114     | PCIAD[6]  |
| 25      | CTS*[0]  | 55      | REQ[1]    | 85      | C_BE[2]   | 115     | PCIAD[5]  |
| 26      | RXD[1]   | 56      | REQ[0]    | 86      | FRAME*    | 116     | VSS       |
| 27      | TXD[1]   | 57      | PCIAD[31] | 87      | IRDY*     | 117     | PCIAD[4]  |
| 28      | CTS*[1]  | 58      | PCIAD[30] | 88      | VSS       | 118     | PCIAD[3]  |
| 29      | GSDAO[0] | 59      | VSS2      | 89      | TRDY*     | 119     | PCIAD[2]  |
| 30      | VDD2     | 60      | VDDS      | 90      | VDD2      | 120     | VDDS      |

| Pin No. | Signal    | Pin No. | Signal   | Pin No. | Signal    | Pin No. | Signal      |
|---------|-----------|---------|----------|---------|-----------|---------|-------------|
| 121     | VSS       | 151     | VSS2     | 181     | VSS2      | 211     | VSS2        |
| 122     | PCIAD[1]  | 152     | DATA[12] | 182     | XIN       | 212     | SDCS*[0]    |
| 123     | PCIAD[0]  | 153     | VSS      | 183     | XOUT      | 213     | SDCS*[1]    |
| 124     | ACK*      | 154     | DATA[5]  | 184     | VDD2      | 214     | SDCS_CE*[2] |
| 125     | DMAREQ[3] | 155     | DATA[13] | 185     | VDD2      | 215     | SDCS_CE*[3] |
| 126     | DMAACK[3] | 156     | DATA[6]  | 186     | PLLVDD    | 216     | SDCS_CE*[4] |
| 127     | DMAREQ[2] | 157     | DATA[14] | 187     | FILTER[0] | 217     | SDCS_CE*[5] |
| 128     | DMAACK[2] | 158     | DATA[7]  | 188     | FILTER[1] | 218     | VDDS        |
| 129     | DMAREQ[0] | 159     | VDDS     | 189     | PLLVSS    | 219     | DMAACK[1]   |
| 130     | VSS       | 160     | DATA[15] | 190     | VSS2      | 220     | DMAREQ[1]   |
| 131     | VDDS      | 161     | VSS      | 191     | NMI*      | 221     | DQM[2]      |
| 132     | DMAACK[0] | 162     | DQM[0]   | 192     | SCANENB*  | 222     | VSS         |
| 133     | DMADONE*  | 163     | DQM[1]   | 193     | CLKEN     | 223     | DQM[3]      |
| 134     | INT[3]    | 164     | ADDR[5]  | 194     | RESET*    | 224     | DATA[16]    |
| 135     | INT[2]    | 165     | ADDR[6]  | 195     | TEST*     | 225     | DATA[24]    |
| 136     | INT[1]    | 166     | ADDR[7]  | 196     | ADDR[18]  | 226     | DATA[17]    |
| 137     | INT[0]    | 167     | ADDR[8]  | 197     | ADDR[19]  | 227     | DATA[25]    |
| 138     | PIO[0]    | 168     | VSS      | 198     | RAS*      | 228     | DATA[18]    |
| 139     | DATA[0]   | 169     | ADDR[9]  | 199     | VSS       | 229     | VSS         |
| 140     | DATA[8]   | 170     | VDDS     | 200     | CAS*      | 230     | VDDS        |
| 141     | DATA[1]   | 171     | ADDR[10] | 201     | SDCLK[0]  | 231     | DATA[26]    |
| 142     | DATA[9]   | 172     | ADDR[11] | 202     | SDCLK[1]  | 232     | DATA[19]    |
| 143     | VSS       | 173     | ADDR[12] | 203     | SDCLK[2]  | 233     | DATA[27]    |
| 144     | DATA[2]   | 174     | ADDR[13] | 204     | VDDS      | 234     | DATA[20]    |
| 145     | DATA[10]  | 175     | ADDR[14] | 205     | SDCLK[3]  | 235     | DATA[28]    |
| 146     | DATA[3]   | 176     | VSS      | 206     | SDCLK[4]  | 236     | DATA[21]    |
| 147     | VDDS      | 177     | ADDR[15] | 207     | VSS       | 237     | VSS         |
| 148     | DATA[11]  | 178     | ADDR[16] | 208     | CKE       | 238     | DATA[29]    |
| 149     | DATA[4]   | 179     | ADDR[17] | 209     | WE*       | 239     | DATA[22]    |
| 150     | VDD2      | 180     | VDDS     | 210     | VDD2      | 240     | VDDS        |

\* Active-low signal

## 5. PIN FUNCTION

| Name of Signal   | I/O              | Function                                                                            |  |  |
|------------------|------------------|-------------------------------------------------------------------------------------|--|--|
| System Interface | System Interface |                                                                                     |  |  |
| SYSCLK           | 0                | System Clock                                                                        |  |  |
|                  |                  | Outputs a system clock with frequencies for full or half-speed bus mode depending   |  |  |
|                  |                  | upon programmed configuration captured at RESET*.                                   |  |  |
| DATA[31:0]       | I/O              | 32-bit external data bus                                                            |  |  |
|                  |                  | During RESET*, the state of DATA[6:0] are used to set the configuration of the      |  |  |
|                  |                  | TX3927. DATA[6:0] are propagated through a transparent latch and are captured on    |  |  |
|                  |                  | the rising edge of RESET*.                                                          |  |  |
|                  |                  | Signal is connected to internal pull-up resistor.                                   |  |  |
| ACK*             | I/O              | Acknowledge                                                                         |  |  |
|                  |                  | Signifies that there is valid data on the data bus or that a data transfer has been |  |  |
|                  |                  | made. Can be driven by the TX3927 or external devices.                              |  |  |
|                  |                  | Signal is connected to internal pull-up resistor.                                   |  |  |
| RESET*           | Т                | Reset                                                                               |  |  |
|                  |                  | Initializes the TX3927. RESET* signal must remain low for a minimum of 256 SDCLK    |  |  |
|                  |                  | cycles to effect a valid reset.                                                     |  |  |
|                  |                  | Signal is connected to internal pull-up resistor.                                   |  |  |

| Clock Signals |   |                                                                                          |
|---------------|---|------------------------------------------------------------------------------------------|
| XIN           | I | Crystal Input                                                                            |
|               |   | Input from a crystal oscillator at 1/1, 1/2, or 1/4 of the core frequency; or input from |
|               |   | an external crystal at 1/16 of the core frequency.                                       |
| XOUT          | 0 | Crystal Output                                                                           |
|               |   | Asserted high if an external clock source is selected, or attached to an external        |
|               |   | crystal with a frequency of 1/16 of the core frequency.                                  |
| CLKEN         | I | Clock Enable                                                                             |
|               |   | Enables internal clock generator. Should be asserted via external logic when $V_{dd}$    |
|               |   | reaches minimum specification and XIN has started and is stable.                         |
|               |   | Signal is connected to internal pull-up resistor.                                        |

| Interrupt Signals |   |                                                                                 |  |
|-------------------|---|---------------------------------------------------------------------------------|--|
| NMI*              | Ι | Non Maskable Interrupt                                                          |  |
|                   |   | Non-Maskable interrupt input. Signal is connected to internal pull-up resistor. |  |
| INT[5:4]          | Ι | INT [5:4] multiplexed with CTS0/RTS0                                            |  |
| INT[3:0]          | Ι | Interrupt Requests                                                              |  |
|                   |   | Signal is connected to internal pull-up resistor.                               |  |

| Timer Interface |   |                                                                                                                    |  |
|-----------------|---|--------------------------------------------------------------------------------------------------------------------|--|
| TIMER[1:0]      | 0 | Timer Pulse Width Output                                                                                           |  |
|                 |   | Multiplexed with other functions.<br>DMAREQ[3]/PIO15/TIMER[1]<br>DMAACK[3]/PIO14/TIMER[0]<br>DMADONE/PIO7/TIMER[0] |  |

| Memory Interfac | е |                                                                                                                                                        |
|-----------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDCLK[4:0]      | 0 | SDRAM Controller Clock                                                                                                                                 |
|                 |   | Signal is connected to internal pull-up resistor.                                                                                                      |
| RAS*            | 0 | Row Address Strobe                                                                                                                                     |
|                 |   | RAS* signal for the access of all synchronous memory devices.                                                                                          |
| CAS*            | 0 | Column Address Strobe<br>CAS* signal for the access of all synchronous memory devices.                                                                 |
| SDCS*[7:0]      | 0 | Synchronous Memory Device Chip Select                                                                                                                  |
|                 |   | Chip select for synchronous memory devices and 100-pin DIMM Flash.<br>SDCS[7:2] are shared with ROMCE[7:2] and are assigned by software. SDCS[7:6] are |
|                 |   | also shared with DMA REQ/ACK[1] and PIO[11:10] via software assignment.                                                                                |
| DQM[3:0]        | 0 | Data Mask                                                                                                                                              |
|                 |   | During a write cycle, the DQM signal functions as a Data Mask and can control every                                                                    |
|                 |   | byte of the input data for SDRAMs. During a read cycle, the DQM functions as the                                                                       |
|                 |   | control of the SDRAM output buffers. The DQMs also function as byte write enables to                                                                   |
|                 |   | DIMM Flash during a write cycle.                                                                                                                       |
| WE*             | 0 | Write Enable                                                                                                                                           |
|                 |   | Write enable signal for access of synchronous memory devices.                                                                                          |
| CKE             | 0 | Clock Enable                                                                                                                                           |
|                 |   | Used for synchronous memory devices.                                                                                                                   |

| ACE*       | 0 | ROM Address Clock Enable                                                                 |
|------------|---|------------------------------------------------------------------------------------------|
|            |   | Enables capture of upper ten bits (multiplexed address) in an external latch. Used with  |
|            |   | ROM, SRAM, and peripheral I/O. (Only active if next upper address differs from the       |
|            |   | prior value.)                                                                            |
| SWE*       | 0 | Static RAM Write Enable                                                                  |
|            |   | (Used in conjunction with ROM Controller)                                                |
| ADDR[19:2] | 0 | Addresses for all memory devices                                                         |
|            |   | (During RESET*, the state of these pins are used to set the configuration of the TX3927. |
|            |   | Pin states are propagated through a transparent latch and are captured on the rising     |
|            |   | edge of RESET*.)                                                                         |
|            |   | Signal is connected to internal pull-up resistor.                                        |
| OE*        | 0 | Output Enable                                                                            |
|            |   | Output enable for all devices controlled by the ROM Controller and for SMROM and         |
|            |   | DIMM Flash.                                                                              |
| CE*[7:0]   | 0 | ROM Chip Enable                                                                          |
|            |   | Chip selects to ROM, SRAM, FLASH and peripheral devices. Shared with SDRAM               |
|            |   | SDCS*[7:2] via software assignment. Signals connected to internal pull-up resistors.     |
| BWE*[3:0]  | 0 | Data Byte Write Enable                                                                   |
|            |   | Can be Byte write enables or Byte enables during a ROMC cycle.                           |
| DSF        | 0 | Define Special Function                                                                  |
|            |   | Multiplexed with PIO[1] and used for SGRAM special register functions.                   |

| PCI Interface |     |                                                                                      |
|---------------|-----|--------------------------------------------------------------------------------------|
| PCIAD[310]    | I/O | The 32 Bit Address and Data Buses are multiplexed on the same PCI pins.              |
| C_BE[30]      | I/O | Command and Byte Enable                                                              |
| PAR           | I/O | Parity for PCIAD[310] and C_BE[30]. Even Parity                                      |
| FRAME*        | I/O | Indicates beginning and duration of an transaction.                                  |
| TRDY*         | I/O | Target ready                                                                         |
| IRDY*         | I/O | Initiator ready                                                                      |
| STOP*         | I/O | STOP* indicates that the current Target is requesting Initiator to stop the current  |
|               |     | transaction.                                                                         |
| DEVSEL*       | I/O | Device select                                                                        |
|               |     | Indicates that an active device has decoded its address as the target of the current |
|               |     | access.                                                                              |

| REQ*[3:0]   | I/O | Request PCI bus                                                                     |
|-------------|-----|-------------------------------------------------------------------------------------|
|             |     | In internal arbiter mode, REQ*[3:0] are inputs.                                     |
|             |     | In external arbiter mode, REQ*[0] is an output, REQ*[1] is an interrupt output, and |
|             |     | REQ*[3:2] are unused.                                                               |
| GNT*[3:0]   | I/O | Grant PCI bus                                                                       |
|             |     | In internal arbiter mode, GNT*[3:0] are outputs.                                    |
|             |     | In external arbiter mode, GNT*[0] is an input and GNT*[3:1] are unused.             |
| PCICLK[3:0] | I/O | PCICLK[0] becomes input when PCICLKEN is disabled.                                  |
|             |     | PCICLK[3:1] are tri-state outputs.                                                  |
| PERR*       | I/O | Data Parity Error                                                                   |
|             |     | Reports parity error on all transactions except Special Cycle command.              |
| ID_SEL      | I   | Initialization Device select                                                        |
|             |     | Used as chip select during configuration read/write transaction on PCI bus.         |
| SERR*       | I/O | System Error                                                                        |
|             |     | Reports errors for all address parity errors and data parity error on Special Cycle |
|             |     | commands, and may optionally be used to report any other non-parity or system       |
|             |     | errors.                                                                             |

| DMA Interface |     |                                                                                  |
|---------------|-----|----------------------------------------------------------------------------------|
| DMAREQ[3:0]   | Ι   | DMA Request                                                                      |
|               |     | DMA request from an external device. Signals are software assigned and shared    |
|               |     | with PIO/TIMER and SDCS_CE[7] functions. Signal is connected to internal pull-up |
|               |     | resistor.                                                                        |
| DMAACK[3:0]   | 0   | DMA Acknowledge                                                                  |
|               |     | DMA acknowledge to external devices. Signals are software assigned and shared    |
|               |     | with PIO/TIMER and SDCS_CE[6] functions. Signal is connected to internal pull-up |
|               |     | resistor.                                                                        |
| DMADONE*      | I/O | DMA Transfer/Chain Finished                                                      |
|               |     | Signal is connected to internal pull-up resistor.                                |

| SIO Interface |   |                                                                                            |
|---------------|---|--------------------------------------------------------------------------------------------|
| CTS*[1:0]     | I | SIO Clear to Send                                                                          |
|               |   | Signals are software assigned and shared with PIO/INT and serial debug GSDAO[1] functions. |
|               |   | Signal is connected to internal pull-up resistor.                                          |
| RTS*[1:0]     | 0 | SIO Request to Send                                                                        |
|               |   | Signals are software assigned and shared with PIO/INT and serial debug GPCST[3] functions. |
|               |   | Signal is connected to internal pull-up resistor.                                          |
| RXD[1:0]      | I | SIO Receive Data                                                                           |
|               |   | Signals are multiplexed with PIO/INT functions.                                            |
|               |   | Signal is connected to internal pull-up resistor.                                          |
| TXD[1:0]      | 0 | SIO Transmit Data                                                                          |
|               |   | Signals are multiplexed with PIO/INT functions.                                            |
|               |   | Signal is connected to internal pull-up resistor.                                          |
| SCLK          | Ι | External Serial Clock                                                                      |
|               |   | Signal is connected to internal pull-up resistor.                                          |

| PIO Interface |     |                                                                                                                                                                                                    |
|---------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIO[15:0]     | I/O | PIO Ports                                                                                                                                                                                          |
|               |     | All PIO signals, except 0, are shared with either DMA, INT, TIMER, Debug, or SIO functions. PIO[1] is shared with DSF, an SGRAM memory function. PIO[0] is connected to internal pull-up resistor. |

| Debug Interface |   |                                                                                                                                                                                                                                                                                     |
|-----------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GDCLK           | 0 | Debug Clock Signal                                                                                                                                                                                                                                                                  |
|                 |   | This is the clock output for the real-time debugging system. The serial monitor bus and PC trace interface signals all have their timings regulated by this debug clock. During serial monitor bus operation, this clock is half the frequency of the TX39/H2 core operating clock. |
| GSDAO[1:0]      | 0 | Serial Data and Address Output/Target PC                                                                                                                                                                                                                                            |
|                 |   | These signals function as serial data/address outputs when operating with the serial monitor bus interface or as debug interrupt input when operating with the PC trace interface.                                                                                                  |

| GPCST[3:0] | 0 | PC Trace Status                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            |   | Outputs PC trace status information and serial monitor bus mode.                                                                                                                                                                                                |  |  |  |  |  |  |
| GDRESET*   | Ι | Debug Reset                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            |   | A reset input for the real-time debugging system. When this signal is asserted, the debug support unit (DSU) is initialized.                                                                                                                                    |  |  |  |  |  |  |
|            |   | Signal is connected to internal pull-up resistor.                                                                                                                                                                                                               |  |  |  |  |  |  |
| GDBGE*     | Ι | Debugger Enable                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|            |   | Indicates whether a real-time debugging system is connected external to the TX39/H2 core. This signal must be low when a real-time debugging system is connected or high when not connected. When DBGE* = high, the clock supplied to the DSU block is stopped. |  |  |  |  |  |  |
|            |   | Signal is connected to internal pull-up resistor.                                                                                                                                                                                                               |  |  |  |  |  |  |
| GSDI*      | Ι | Serial Data Input/ Debug Interrupt                                                                                                                                                                                                                              |  |  |  |  |  |  |
|            |   | This signal functions as serial data/address input when operating with the serial monitor bus interface or as target PC input when operating with the PC trace interface.                                                                                       |  |  |  |  |  |  |
|            |   | Signal is connected to internal pull-up resistor.                                                                                                                                                                                                               |  |  |  |  |  |  |

| Others    |   |                                                                            |  |  |  |  |
|-----------|---|----------------------------------------------------------------------------|--|--|--|--|
| TEST*     | I | est Pin                                                                    |  |  |  |  |
|           |   | This signal is used as internal functional test. It should be set to high. |  |  |  |  |
|           |   | Signal is connected to internal pull-up resistor.                          |  |  |  |  |
| SCAN_ENB* | Т | Scan Mode Test Control                                                     |  |  |  |  |
|           |   | This signal is used as internal functional test. It should be set to high. |  |  |  |  |
|           |   | Signal is connected to internal pull-up resistor.                          |  |  |  |  |

| Power pins and Total pin count |   |                                               |  |  |  |  |
|--------------------------------|---|-----------------------------------------------|--|--|--|--|
| PLL_VSS,                       | Т | ower and Ground pins to internal PLL circuit. |  |  |  |  |
| PLL_VDD                        |   |                                               |  |  |  |  |
| VDD2                           | Ι | Power pins at 2.5V                            |  |  |  |  |
| VDDS                           | Ι | Power pins at 3.3V                            |  |  |  |  |
| VSS2,VSS                       | I | Ground pins                                   |  |  |  |  |
| Total Pin Count                |   | Pins: 240 pins                                |  |  |  |  |

### 6. ELECTRICAL CHARACTERISTICS

#### 6.1 Absolute Maximum Ratings

| Parameter                                                                                                                                                                             | Symbol           | Rating                                      | Unit    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|---------|
| Supply voltage                                                                                                                                                                        | VDDS             | -0.3 ~ 4.5                                  | V       |
|                                                                                                                                                                                       | V <sub>DD2</sub> | -0.3 ~ 3.6                                  |         |
| Input voltage<br>RXD[1:0], CTS[1:0], PCIAD[31:0],<br>PCICLK[3:0], GNT[3:0], REQ[3:0],<br>C_BE[3:0], IDSEL, FRAME*, IRDY*, TRDY*,<br>DEVSEL*, STOP*, PERR*, SERR*, PAR<br>Other inputs | VIN1             | -0.3 ~ 6.7V                                 | V       |
| Storage temperature                                                                                                                                                                   | V <sub>IN2</sub> | -0.3 ~ V <sub>DDS</sub> + 0.3V<br>-40 ~ 125 | v<br>°c |
| Maximum power dissipation                                                                                                                                                             | Рр               | 2.0                                         | W       |

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in possible injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating will ever be exceeded.

## 6.2 Recommended Operating Conditions

| Parameter                  |          | Symbol           | Condition | Min. | Max. | Unit |
|----------------------------|----------|------------------|-----------|------|------|------|
| Supply voltage             | I/O      | VDDS             |           | 3.0  | 3.6  | V    |
|                            | Internal | V <sub>DD2</sub> |           | 2.3  | 2.7  | V    |
| Operating case temperature |          | Т <sub>с</sub>   |           | 0    | 70   | °C   |

Note: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device, is used under conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC and DC values, etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

## 6.3 DC Characteristics

#### 6.3.1 DC characteristics of pins other than PCI interface pins

 $(T_{c} = 0 \sim 70^{\circ} \text{C}, V_{DDS} = 3.3 \text{V}^{\pm} 0.3 \text{V}, V_{DD2} = 2.5 \text{V}^{\pm} 0.2 \text{V}, V_{SS} = 0 \text{V})$ 

| Parameter                 | Symbol           | Condition                              | Min.                  | Max.                  | Unit |
|---------------------------|------------------|----------------------------------------|-----------------------|-----------------------|------|
| Low-level input voltage   | V <sub>IL1</sub> | RXD[1:0], CTS[1:0]                     |                       | V <sub>DD</sub> ×0.2  | V    |
|                           | V <sub>IL2</sub> | RXD[1:0], CTS[1:0]                     |                       | 0.8                   |      |
| High-level input voltage  | VH1              | RXD[1:0], CTS[1:0]                     | V <sub>DDS</sub> ×0.8 | V <sub>DDS</sub> ×0.3 | V    |
|                           | VIH2             | RXD[1:0], CTS[1:0]                     | 2.0                   | 5.5                   |      |
| Low-level output current  | IOL1             | (1) V <sub>OL</sub> =0.4V              |                       | 8                     | mA   |
|                           | Ia2              | (2) $V_{0L} = 0.4V$                    |                       | 16                    | mA   |
|                           |                  |                                        |                       |                       |      |
| High-level output current | IOH1             | (1) V <sub>OH</sub> =24V               | -8                    |                       | mA   |
|                           | IOH2             | (2) V <sub>OH</sub> =24V               | -16                   |                       | mA   |
| Operating current         |                  |                                        |                       |                       |      |
| I/O                       | IDDS             | (3) f=133MHz, V <sub>DDS = 3.6V</sub>  |                       | 120                   | mA   |
| Internal                  | IDD2             | (3) f=133MHz, V <sub>DDS = 2.7</sub> V |                       | 420                   | mA   |
| Input leakage current     | IIН              |                                        | -10                   | 10                    | μΑ   |
|                           | ١L               |                                        | -10                   | 10                    | μΑ   |
| Pullup Resistor           | RST              |                                        | 50                    | 300                   | kΩ   |

(1) : Other signals, Excluding (2)

(2) : ADDR[ 19:5], SDCLK[4:0], DQM[3:0], DATA[31:0], CAS\*, RAS\*, CKE, WE\*, OE\*, SYSCLK, GDCLK, ACK\*

(3) f: CPU frequency

## 6.3.2 DC characteristics of PCI interface pins

 $(T_{c} = 0 \sim 70^{\circ}C, V_{DDS} = 3.3V^{\pm}0.3V, V_{DD2} = 2.5V^{\pm}0.2V, V_{SS} = 0.0)$ 

| Parameter                | Symbol               | Condition                  | Min.       | Max.       | Unit                     |
|--------------------------|----------------------|----------------------------|------------|------------|--------------------------|
| Low-level input voltage  | V <sub>IL3</sub>     |                            | -0.5       | VDDS x 0.3 | V                        |
| High-level input voltage | VIH3                 |                            | VDDS x 0.5 | 5.5        | V                        |
| Output High Voltage      | Vан                  | I <sub>OUT</sub> =-2mA     | VDDS x 0.9 |            | V                        |
| Output Low Voltage       | Val                  | I <sub>OUT</sub> =3mA, 6mA |            | VDDS x 0.1 | V                        |
| Input leakage current    | ι <sub>Η</sub><br>ι∟ | 0 < V <sub>N</sub> <5V     | -10<br>-10 | 10<br>10   | μ <u>Α</u><br>μ <u>Α</u> |

## 6.4 Crystal Oscillator Characteristics

6.4.1 Recommended oscillator conditions



(1) For a reference. Ask dock generator manufacture.

6.4.2 Recommended input clock conditions (when 2-multiply)

| Parameter             | Symbol | Recommended Value | Unit |
|-----------------------|--------|-------------------|------|
| Input Clock Frequency | fIN    | 50~66.67          | MHz  |

Note: When 2-multiply, the external clock should input to the XIN pin. Then the XOUT pin must be left open.

Filter0

#### 6.4.3 Electrical characteristics

 $(T_{c} = 0 \sim 70^{\circ}C, V_{DDS} = 33V^{\pm}0.3V, V_{DD2} = 25V^{\pm}0.2V, V_{SS} = 0V)$ 

rev4\_11-Jan-2000 16/22

| Parameter              | Symbol           | Condition      | MIN. | TYP. | MAX | Unit |
|------------------------|------------------|----------------|------|------|-----|------|
| Oscillation start time | <sup>t</sup> STA | f=6.25~8.75MHz | -    | 1    | 10  | ms   |

## 6.5 PLL Filter Circuit

The following filter circuit is recommended for the PLL filter using the pins LP (Filter0) and AGS (Filter1).

Filter1

| Symbol             | Symbol              | Recommended Value        | Unit |
|--------------------|---------------------|--------------------------|------|
| External Capacitor | C <sub>Filter</sub> | 1800 (using 16x divider) | рF   |
|                    |                     | 220 (using 2x divider)   | pF   |

## 6.6 AC Characteristics (of pins other than PCI interface pins)

6.6.1 Table of AC characteristics

 $(T_{c} = 0 \sim 70^{\circ}C, V_{DDS} = 3.3V^{\pm}0.3V, V_{DD2} = 2.5V^{\pm}0.2V, V_{SS} = 0V, CL = 50pF)$ 

| Symbol          | Signal            | Description                     | Min | Max | Unit |
|-----------------|-------------------|---------------------------------|-----|-----|------|
| <b>t</b> sys    | SYSCLK/SDCLK[4:0] | Cyde Time                       | 15  |     | ns   |
| <b>t</b> sysh   | SYSOLK            | Cyde Time (Half-speed bus mode) | 30  |     | ns   |
| <b>t</b> sysm   | SYSCLK/SDCLK[4:0] | Min High/Low Level              | 5   |     | ns   |
| <b>t</b> sysmh  | SYSCLK            | Min Half-Speed High/Low Level   | 12  |     | ns   |
| t₫              | (1)               | Output Delay                    |     | 7   | ns   |
| <b>t</b> oh     | (1)               | Output Hold                     | 1   |     | ns   |
| t <sup>su</sup> | (2)               | Input Setup                     | 7   |     | ns   |
| <b>t</b> n      | (2)               | Input Hold                      | 0   |     | ns   |
| <b>t</b> daz    | DATA[31:0], ACK*  | Data Active to Hi-Z             |     | 7   | ns   |
| <b>t</b> dza    | DATA[31:0], ACK*  | Data Hi-Z to Active             | 1   |     | ns   |

(1) ACK\*, DATA[31:0], ROMCE[7:0]\*, OE\*, ACE\*, SWE\*, BWE[3:0]\*, ADDR[19:2], DMAACK[3:0], DMADONE\*, PIO[15:0], TIMER[1:0] (2) ACK\*, DATA[31:0], NMI\*, INT[5:0], DMAREQ[3:0], DMADONE\*, PIO[15:0]

6.6.2 SDRAM Interface AC characteristics

|                     |                   |                                   | 50pF 100pF |     | 150pF |     |     |     |      |
|---------------------|-------------------|-----------------------------------|------------|-----|-------|-----|-----|-----|------|
| Symbol              | Signal            | Description                       | Min        | Max | Min   | Max | Min | Max | Unit |
| t <sub>sdclk</sub>  | SDCLK[4:0]/SYSCLK | Cycle Time                        | 15         |     | 15    |     | 15  |     | ns   |
| t <sub>sdclkm</sub> | SDCLK[4:0]/SYSCLK | Minimum High/Low Level            | 5          |     | 5     |     | 5   |     | ns   |
| t <sub>sd</sub>     | 3                 | Output Delay                      |            | 7   |       | 8   |     | 9   | ns   |
| t <sub>sdd</sub>    | DATA[31:0]        | Output Delay                      |            | 8   |       | 10  |     | 12  | ns   |
| t <sub>soh</sub>    | 4                 | Output Hold                       | 1          |     | 1     |     | 1   |     | ns   |
| t <sub>ssu1</sub>   | DATA[31:0]        | Input Setup (Internal clock)      | 7          |     | 7     |     | 7   |     | ns   |
| t <sub>ssu2</sub>   | DATA[31:0]        | Input Setup (Pin feed-back clock) | 2          |     | 2     |     | 2   |     | ns   |
| t <sub>sih</sub>    | DATA[31:0]        | Input Hold                        | 0          |     | 0     |     | 0   |     | ns   |
| t <sub>sdaz</sub>   | DATA[31:0]        | Data Active to Hi-Z               |            | 7   |       | 7   |     | 7   | ns   |
| t <sub>sdza</sub>   | DATA[31:0]        | Data Hi-Z to Active               | 1          |     | 1     |     | 1   |     | ns   |

(T\_{c} = 0 ~ 70 ^{\circ}C, V\_{DDS} = 3.3 V^{\pm} 0.3 V, V\_{DD2} = 2.5 V^{\pm} 0.2 V, V\_{SS} = 0V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF for SDCLK[4:C\_{C} = 0.2 V, V\_{SS} = 0.2 V, CL = 50 pF

(3) SDCS[7:0], RAS\*, CAS\*, WE\*, CKE, OE\*, DSF, ADDR[19:5], DQM[3:0]

(4) SDCS[7:0], RAS\*, CAS\*, WE\*, CKE, OE\*, DSF, ADDR[19:5], DQM[3:0], DATA[31:0]

## 6.7 AC Characteristics (of PCI interface pins)

6.7.1 AC characteristics table

(PCL\_CLK speed = 33MHz, Tc = 0  $^{\sim}$  70  $^{\circ}$  C, V\_DD = 5.0V  $^{\pm}$  0.25V, V\_SS = 0V, CL = 50pF)

| Symbol                 | Signal | Description                                            | Min. | Max. | Unit |
|------------------------|--------|--------------------------------------------------------|------|------|------|
| t <sub>cyc</sub>       |        | PCI_CLK cyde time                                      | 30   |      | ns   |
| <sup>t</sup> high      |        | PCI_CLK high time                                      | 11   |      | ns   |
| t <sub>low</sub>       |        | PCI_CLK low time                                       | 11   |      | ns   |
| -                      |        | PCI_CLK slew rate                                      | 1    | 4    | V/ns |
| t <sub>val</sub>       |        | PCI_CLK to signal valid delay - bused signals          | 2    | 11   | ns   |
| t <sub>val</sub> (ptp) |        | PCI_CLK to signal valid delay - point to point signals | 2    | 12   | ns   |
| t <sub>on</sub>        |        | Float to active delay                                  | 2    |      | ns   |
| <sup>t</sup> off       |        | Active to float delay                                  |      | 28   | ns   |
| t <sub>su</sub>        |        | Input set up time to PCI_CLK - bused signals           | 7    |      | ns   |
| t <sub>su</sub> (ptp)  |        | Input set up time to PCI_CLK - point to point signals  | 12   |      | ns   |
| t <sub>h</sub>         |        | Input hold time from PCI_CLK                           | 0    |      | ns   |
| t <sub>rst</sub>       |        | Reset active time after power stable                   | 1    |      | an   |
| <sup>t</sup> rst-clk   |        | Reset active time after PCI_CLK stable                 | 100  |      | US   |
| t <sub>rst-off</sub>   |        | Reset active to output float delay                     |      | 40   | ns   |

| Symbol               | Parameter              | Condition                                                             | Min.                   | Max.   | Unit |
|----------------------|------------------------|-----------------------------------------------------------------------|------------------------|--------|------|
| I <sub>OH (AC)</sub> | Switching Current High | 0 <v₀ut <1.4<="" th=""><th>-44</th><th>0.8</th><th>mA</th></v₀ut>     | -44                    | 0.8    | mA   |
|                      |                        | 1.4 < Vout < 2.4                                                      | -44+( Vout-1.4)/ 0.024 |        | mA   |
|                      |                        | 3.1 <vout <="" th="" vcc<=""><th></th><th>Eqťn A</th><th></th></vout> |                        | Eqťn A |      |
|                      | (Test Point)           | V₀ut = 3.1                                                            |                        | -142   | mA   |
| I <sub>OL (AC)</sub> | Switching Current Low  | Vout > 2.2                                                            | 95                     |        | mA   |
|                      |                        | 22> Vout > 0.55                                                       | Vaut / 0.023           |        | mA   |
|                      |                        | 0.71>Vout >Vcc                                                        |                        | Eqťn B |      |
|                      | (Test Point)           | V <sub>out</sub> = 0.71                                               |                        | 206    | mA   |
| I <sub>CL</sub>      | Low Clamp Output       | -5 <v<sup>₀ ≤ -1</v<sup>                                              | -25+(Vin+1)/ 0.015     |        | mA   |
| slewr                | Output Rise Slew Rate  | 0.4V to 2.4V load                                                     | 1                      | 5      | V/ns |
| slew <sub>f</sub>    | Output Fall Slew Rate  | 2.4V to 0.4V load                                                     | 1                      | 5      | V/ns |

Please refer to the PCI Local Bus Specification Revision 2.2 for more information.

## 6.8 Timing Diagrams

6.8.1 Definition of AC characteristics



6.8.2 Definition of AC characteristics (of PCI pins)



## 7. PACKAGE DIMENSION

QFP240-P-3232-0.5

Unit: mm



# TOSHIBA

QFP240-P-3232-0.5

TENTATIVE

Unit: mm

